Posts

Non-Thermal Plasma H2, no CO2

Precision H2, a Canadian company, is developing a non-thermal plasma process which disassembles methane (CH4) into hydrogen and carbon black. Note, no CO2!

There are dozens of plasma companies, often focused on medical waste, and some on power (with coal or some waste stream as the feedstock). (See footnote) Usually these are hot plasmas, and tend to be expensive due to the materials problems at high temperature. In a plasma, sometimes called the 4th state of matter, material is very highly ionized by an electrical arc discharge. Lightning is a good example, and many plasma systems are brute force, require a lot of energy, and get very hot.

A so-called “non-thermal” plasma is one in which the electric discharge is controlled and confined. Locally it is extremely hot, but each spark doesn’t last long enough to heat up the surrounding materials. Precision H2 has created a “plasma dissociation reactor”, where the electrical discharge is carefully shaped and especially tailored to the specific job of dismantling methane. The electrical energy goes straight to the molecule, and doesn’t have to get there as heat. (It’s a little bit like cooking with microwaves instead of a conventional oven.)

The methane streaming through the reactor is partly converted to H2, with the carbon dropping out as a nanopowder. The output is then a blend of methane enriched with hydrogen (hythane). In an intriguing twist, this blend can be sent to a fuel cell which will consume the hydrogen, leaving the methane to be cycled back to the reactor. In effect, the fuel cell itself is used to separate out the hydrogen–for its own use. This configuration would produce electricity directly, rather than hydrogen. Pure hydrogen is gotten by using PSA (pressure swing absorption) or membranes to do the separation. Potential partners are already in discussions on both fronts (i.e. fuel cells and purification). Also, hythane can be used directly in engines, to good advantage.

The key is electronics (pulse shaping, and analysis and control of the discharge), and costs for electronics are well understood. Because temperatures remain modest, the reaction chamber can be made inexpensively, and is readily scalable.

There is an energy penalty–not all the “fuel value” of the methane is used, because the carbon itself isn’t oxidized. Instead, since no oxygen is present, no CO2 is produced–think of it as “presequestration”, with resulting GHG and carbon-trading benefits. Also, the carbon is in a valuable form which can be sold, enhancing overall economics. Detailed thermodynamic and financial models have been developed, and the company believes that even today, with “one-off” systems, they can produce hydrogen cost competitively.

The company is raising a round of equity financing.

Contact Dan Fletcher
514-842-3575, danfletcher@precisionh2.com
Precision H2
Montreal, Quebec, Canada
http://www.precisionh2.com/

~~~~~~
An amazing find can be found at:
http://www.noharm.org/nonincineration

“Non-Incineration Medical Waste Treatment Technologies”, an August 2001 report …. explores the environmental and economic impacts, among other considerations, of about 50 specific technologies.

Chapter 4 in particular is an exhaustive review of every technology and nearly every company with a means to destroy hazardous materials. While the focus is on medical waste, most of the technologies also apply to hazardous materials, municipal waste and sludge, biomass, and fossil fuels. Gasification, pyrolysis, plasmas, and many different chemical and electrochemical oxidation and reduction methods are out there, and are being used today at industrial scale. When they can be made to work, the issues are cost, reliability, system longevity, emissions (creation of new hazards, e.g. dioxins), materials handling, feedstock variability, etc. etc. The key is to inject sufficient energy into the material to break the chemical bonds, for example, to get it hot enough for long enough (dwell time).

Capacitive Deionization of Water – A Lot Closer

UFTO first noted this unique water purification technology in January 1995 (see below to review the basic concept), and again in March 1997, when a license was issued to a commercial firm. The company, Far West, has made tremendous progress, and now appears to stand ready to move out in a big way with the commercial development of Capacitive Deionization Technology (CDT). (The name CDI belongs to something else, so the company has adopted the new shorthand CDT.)

The process operates at low voltage and low pressure, does not require membranes or pumps (and so is less sensitive to corrosives), and can operate at high water temperature (so, for example, boiler water can be treated hot). The technology is modular and scalable, with additional capacity or greater filtration accomplished by simply adding more elements, either in parallel or series.

The technology itself has been dramatically improved, with one tenth the weight and one-twentieth the cost of the original devices. New designs don’t require the aerogels to be supported on a substrate, and a clever technique maintains separation with essentially no structural elements.

The business prospects are strengthened by the arrival of a new president with the right experience and connections to restructure the company, raise money, and move forward aggressively with manufacturing, demonstration projects, and joint venture and marketing agreements worldwide.

Initial focus areas are ultrapure process water, ground and waste water treatment, contaminant removal/concentration, and brackish water treatment for drinking water. There is also a demonstration project underway on utility boiler water. Seawater desalination is also a priority.

A prominent story in “Developments to Watch” in Business Week appeared in the March 15 issue, and the response has been tremendous.

The company website at http://www.farwestgroup.com has a vu-graph presentation with considerable detail about the technology and applications, and a business plan is also available on request.

Far West is a public company (FWST), as an OTC-Bulletin Board stock. (There has been a sudden rise in volume and price yesterday and today!) The company is raising $10 Million through a preferred stock offering.

Contact: Dallas Talley, President
520-293-9778 farwestcdi@aol.com

————————————————————–
Subject: UFTO Note — Capacitive Deionization licensed
Date: Thu, 06 Mar 1997

Livermore has given a license for CDI to a small water company in Tucson, AZ who’ve formed a subsidiary, Terra Research Corp., to pursue applications. The parent company is publicly traded OTC – Far West Group, which does water drilling and pumping and supplies.

————————————–
Here is the UFTO writeup about CDI, when Livermore first announced it:

January 1995
Desalination and Waste Water Treatment by Capacitive Deionization (CDI)

On December 20, 1994, LLNL announced a new way to deionize water. The huge effective surface area of carbon aerogels makes feasible the straightforward and well known process of capacitive deionization. Water containing salts, heavy metals or even radioactive isotopes flows through a series of electrochemical cells. An electric potential is applied across the electrodes, which attract the charged ions.

The electrodes are metal plates coated with the aerogel, the high surface area of which allows them to absorb large quantities of ions, which are released later into a small volume “rinse” stream. CDI offers significant benefits over traditional deionization processes, such as reverse osmosis, ion exchange or evaporation. These involve high energy use, reliance on acids and bases, production of corrosive secondary wastes, and use of troublesome membranes. Compared with traditional desalination techniques, CDI could reduce the energy requirement by as much as 100-1000 times.

Potential applications include: treatment of boiler water in power plants, electric residential water softeners, desalination of sea water, waste water treatment (i.e. volume reduction, notably of radioactive wastewater, by a factor of 1000), and more.

A desktop test unit has been operating at LLNL for some time. A patent was filed in May 1994.