CO, CO2 Removal from reformate H2
This press release will be released on Wednesday. It follows an earlier one from Avista that contained some errors. The company, H2fuel, is a spinoff from Unitel and is co-owned by Avista Labs. Unitel is a small technology development company in Chicago with several other developments that we’re tracking for UFTO.
I visited Unitel/H2fuel in Chicago recently, and heard a detailed account of this technology under an NDA. They’ve given me permission to pass the press release along to UFTO, so please hold onto it at least til Thursday.
There is an investment opportunity here.
~~~~~~~~~~~~
H2FUEL NEWS
For Immediate Release, October 31, 2001
Media Contacts: Serge Randhava, H2fuel, 847-297-2265
H2fuel Membrane Program Technical Update
October 31, 2001: In providing additional details about its proposed fuel cell hydrogen membrane program, H2fuel confirmed that the membrane is being tailored to work at temperatures up to 350C, levels that are normally associated with the water gas shift reaction. In a press release issued earlier this month, the company had announced that it had awarded a R&D contract to the University of Kentucky to synthesize, characterize and test a family of chemical transport membranes that can efficiently and selectively remove oxides of carbon from a gas mixture.
The primary objective of the H2fuel membrane program is to eliminate carbon dioxide and carbon monoxide from a reformate gas stream, thereby increasing its hydrogen content and greatly reducing the overall cost of producing pure hydrogen for fuel cell applications.
H2fuel’s membrane module is being configured as a dual-role device. To begin with, all the carbon dioxide in the gas stream will be stripped out of the gas mixture. Simultaneously, the carbon monoxide that is present will be converted into carbon dioxide by means of an integrated water gas shift reaction step, following which this coproduced carbon dioxide will also be transferred out by the membrane. For all practical purposes, the H2fuel membrane module will serve to get rid of all the carbon in the gas before it goes to the fuel cell.
The H2fuel membrane is not a conventional permeation platform. Rather, it will use a polymeric membrane that operates at close to atmospheric pressure, and incorporates a unique chemical transport mechanism for attaching and detaching the carbon dioxide molecule.
“Our membrane program is based upon a simple wish list,” notes Serge Randhava, President of H2fuel. “First, we want to get rid of the carbon dioxide leaving our primary fuel processor. Second, we want to convert any carbon monoxide in the gas stream into carbon dioxide, and also affect the parallel removal of this secondary compound. At the end of the faucet, we want an enriched fuel cell hydrogen stream that is totally free of all oxides of carbon,” he adds.
H2fuel is jointly owned by Avista Labs, Inc., a wholly owned subsidiary of Spokane-based Avista Corp. (NYSE: AVA) and Unitel Fuel Technologies, LLC, Mt. Prospect, IL.