Posts

Building Products from Fly Ash and CO2

Our friends at Materials Technology Ltd. have shared with me the following information about the significant progress they’re making to turn ash into useful materials using Supercritical CO2. Especially noteworthy is the fact that the CO2 is expected to come from the power plant flue gas, and thus represents significant sequestration of CO2 at the same time. Note the information presented on CO2 separation methods.

The original UFTO note about this work appeared on January 1, 1997 – available in the UFTO website database.

Here is the abstract of a paper they will present at the Green Chemistry Conf, Jun 30 – July 2 in Washington (conference details are attached below).

BUILDING PRODUCTS MADE FROM SUPERCRITICAL CARBON DIOXIDE AND FLY ASH

Authors:
Roger Jones, President and CEO,
Materials Technology Ltd, 14525 Rim Rock Road, Reno, NV 89511;
Frank G. Baglin, Prof of Physical Chemistry, Univ of Nevada – Reno,
Bruce A. Salisbury, Plant Engineer, Four Corners Power Plant,
Arizona Public Service, P.O. Box 355, Fruitland, NM 87416.

Introduction:

Coal-fired electric power plant wastes, portland cement, calcium oxide and supercritical carbon dioxide (CO2) are feedstocks to make low-cost, superior roofing shingles, wallboard and other fiber-reinforced products. Flue-gas CO2, recovered using thermally-driven, gas-stripping techniques(1), is permanently bound into the products as carbonates, reducing atmospheric pollution and its contribution to global warming.
Abstract:

The purpose of this patented technology is to produce profitable building products and many other useful things using cemented “dusty” wastes treated with supercritical CO2 (2,3). Products are shaped from a paste made of quick lime, a small amount of portland cement, foamed fly ash and fiberglass reinforcement. Once hydrated, they are treated with supercritical CO2 (preferably recovered from flue gas) to react the hydroxide components, forming carbonates and water and reducing alkalinity to about neutral.

The process has four important advantages:

– Capital required is low (three-year plant and equipment payback).
– Parasitic energy loss to the power plant is low or non-existent.
– There is a sufficiently high value-added component in final products to offset the logistics costs of raw materials and finished goods.

Production of cementitious goods and gas separation technologies are well-settled. Practical gas-separation technologies can be subdivided into four broad categories (4):

Absorption
Membrane separation followed by distillation
Membrane absorption
The appropriate technology depends upon feed stream composition and thermodynamics and upon required quantities of carbon dioxide. In our planned implementation, we will use propylene carbonate absorption. CO2 stripping will occur after sulfur and nitrogen scrubbing.

Forming fiber-reinforced cementitious products like wallboard and roof shingles is also settled technology. Presently, fiberglass reinforced cementitious products demand costly alkali-resistant or plastic-coated glass to prevent alkali-silica reaction. Supercritical carbonation technology allows use of low-cost e-glass instead.

With the exception of foaming agents, fiber reinforcement and portland cement, all raw materials are available on site. The lightweight building products (in this case, fiberglass reinforced roofing shingles and fiberglass reinforced wallboard) are made by cementing foamed fly ash (about 53,000 tons annually for this plant) with calcium oxide (quick lime) and a small amount of portland cement. Both products will be made on continuous lines. After cementing, the products are subjected to treatment with supercritical CO2, again, in a continuous process. The CO2 forms carbonates and carbonated zeolites and reduces the alkalinity of the product to about neutral (pH 7). This permits incorporation of low-cost e-glass fibers without fear of subsequent, harmful alkali-silica reaction. The reinforcement is in the form of both continuous and chopped fiber.

An analysis of the relative inputs to the prototype shingle compared with competing roofing products was made and the results appear in the chart at left (5).

Based on costs of raw materials and energy, our studies indicate that we will be able to sell these waste-based products at pricing points below those of the lowest-priced competing products.

These products are examples of practical, solid-waste-feedstock, chemically bonded ceramics. Many other products can be produced in a similar manner, sequestering large quantities of solid waste and CO2 while offsetting manufacture of products using more energy-intensive systems that increase atmospheric CO2. Examples of such systems include thermoplastics, metals, composites, ceramics and forest products.

As industrial infrastructure in the developed countries ages and requires replacement or renovation, it will be wise to consider supercritical CO2 treated chemically bonded ceramics to reduce energy, raw materials and atmospheric pollution. For developing countries, the benefits are even greater.

In a developing economy, the creation of new industrial infrastructure requires huge investments in transportation systems for feedstocks, raw materials and components. Investment is also required to develop primary, secondary and tertiary manufacturing capacity as well as power plants and facilities to dispose of all types of plant wastes at all levels. Supercritical CO2 chemically bonded ceramic technology reduces much of this investment. Wastes and CO2 simply replace most feedstocks. Ancillary benefits arise from reduction of capital and energy needed to harvest, mine, or otherwise produce raw materials and transport them and intermediate raw materials for secondary or tertiary manufacturing.

Supercritical CO2-treated chemically bonded ceramics rely upon proven, practical technology to produce valuable products from solid waste feedstocks. Capital requirements are lower than conventional production systems, particularly when considering cradle-to-grave economics. Parasitic energy loss to producers is essentially none. Profit margins are high, because most products can be produced with low-cost or no-cost feedstocks.

References:

2 United States Patent 5,518,540 issued May 21, 1996, Cement Treated with High-pressure CO2

3 United States Patent 5,690,729 issued November 27, 1997, Cement Mixtures with Alkali-Intolerant Matter and Method for Making Same

4 21 unpublished papers on methodology for practical recovery of food-grade CO2 from power plant flue gases, Carnegie Mellon University, Professor W.T. Berg, Senior Design Project, March 6, 1996

—————————————

The 2nd Annual Green Chemistry and Engineering Conference: Global Perspectives
June 30 – July 2, 1998
National Academy of Sciences, Washington, D.C.

The Conference is cosponsored by the American Chemical Society, Committee on Environmental Improvement, Division of Environmental Chemistry, Division of Industrial & Chemical Engineering, American Institute of Chemical Engineers, Chemical Manufacturers Association, Council for Chemical Research, National Institute of Standards and Technology, National Research Council, National Science Foundation, Engineering Directorat, the U.S. Department of Energy and the U.S. Environmental Protection Agency, Office of Pollution Prevention & Toxics and Office of Research and Development.

Details, registration form and complete program available at:
http://www.acs.org/meetings/gcec98.htm

Contact Dianne Ruddy at the ACS for further information at
(202) 872-4402, or e-mail d_ruddy@acs.org.

Followup on SC CO2/concrete

Subject: UFTO-followup on sc CO2/concrete
Date: Mon, 27 Jan 1997 09:51:49 -0800
From: Ed Beardsworth

Here’s the Los Alamos Press release, issued today (it was delayed a week). The web site for Materials Technology Ltd. I gave in my earlier note had a typo — the correct address is http://www.mtlstech.com (I left out the ‘s’)

Suggest you get the Nov 96 Sci American article, also avail. online at http://www.sciam.com/1196issue/1196techbus1.html

When someone’s ready, I recommend a call to Roger Jones, the principal at Materials Tech… he’s great to talk to. Keep me posted!
————————————————————–
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
| http://www.ufto.com edbeards@ufto.com
————————————————————–

Los Alamos paves the way for better cement

Laboratory researchers are developing an environmentally friendly process that hardens cement and creates a new class of strong and lightweight building and fabrication materials.

The Laboratory process transforms common portland or lime cemented materials and clays by treatment with carbon dioxide under high pressure, making them chemically stable, nearly impermeable and stronger. The process also makes inexpensive building products out of waste materials, including fly ash from coal-burning power plants, alum sludge from water treatment plants and blast furnace slag. Treated cement also may improve the safe storage of radioactive waste.

The process, patented by Roger Jones Jr. of Materials Technology Limited of Reno, Nev., may lead to new building materials, consumer goods, auto parts and other products. According to Jones, the process creates recyclable materials that will be competitive with certain metals, plastics and wood products.

Under increasing pressure and temperature, carbon dioxide gas first reaches a liquid phase, then enters a region called “supercritical” where it has useful properties of both gas and liquid. Supercritical carbon dioxide expands to fill its container and diffuses into the tiniest pores like a gas. On the other hand, because supercritical carbon dioxide has a high density like a liquid, it can dissolve substances and carry them. In this case, it grabs water molecules and pulls them out of the cement.

Chemically, the process converts the hydroxide of cement to a carbonate, with water as the byproduct. This chemical reaction occurs naturally, too, but may take thousands of years.

“The cement in the Great Wall of China has not yet reached a chemically neutral state,” said Craig Taylor, principal investigator for the Labortory’s Supercritical Fluids Development Center in Organic Chemistry (CST-12). “But the supercritical carbon dioxide treatment achieves the chemically stable condition in minutes or hours. It’s not really cement anymore, but a whole new material. It is really pourable limestone.”

Taylor demonstrates the effect of supercritical carbon dioxide with two chunks of bonded fly ash, a waste product from coal-burning power plants. Set in a pan of water, the untreated sample quickly crumbles and dissolves, obviously useless as a building material. The treated sample, however, remains impervious to the water. Treated fly ash could make a strong, lightweight and economically attractive material for wall board, flooring and other construction products.

Large-scale use of supercritical carbon dioxide is not new to industry. For example, commercial operations have applied the same technology for years to make vegetable oils and to decaffeinate coffee. So Taylor does not foresee difficulties treating large volumes of cement blocks or massive columns and slabs. Even the U.S. Air Force has expressed interest in the technology — for building high-strength concrete slabs for runways.

Using supercritical carbon dioxide through a high pressure nozzle, large surfaces of existing concrete structures might be hardened and sealed against penetration of chemicals, improving wear-resistance and durability. The treated surfaces will resist chipping or scaling because the transition from the thin, very hard exterior to normal strength interior concrete would be gradual.

Large amounts of carbon dioxide produced by coal and oil burning power plants and by gasoline burning cars are blamed in part for a trend toward global warming, called the greenhouse effect. But the cement treatment process, by permanently removing carbon dioxide from the atmosphere and locking it into building products, actually helps reduce the impact of coal and petrochemical use. (Total curing of 2.2 pounds of cement permanently removes about 25 gallons of carbon dioxide from the atmosphere.) Research is under way to use both the fly ash and carbon dioxide expelled by coal-burning plants to produce construction materials.

“Like living coral, now we can take carbon dioxide out of the environment and build our houses with it. The process is good for ourselves and good for the environment,” said Taylor.

The Lab’s continuing role in development of the improved cement will be to optimize treatment conditions and help design a treatment facility. And researchers see a major new area of materials science to pursue.

“It’s a new bulk material not well characterized,” said Taylor. “Materials scientists will be busy with this for decades.”

Since supercritical carbon dioxide readily dissolves many polymers, the process can be used to drive polymers into the surfaces of products made from cements, ceramics or other water-based pastes. Polymer-impregnated structures are better able to resist shock and impact forces and could be useful for a range of products from buildings to auto bodies.

The Laboratory, with the only operational plutonium facility in the country, also is interested in the chemistry of cement because radioactive waste often is mixed with cement for long-term storage and disposal. Because regular cement contains water, however, chemical reactions occur inside these cemented wastes, sometimes resulting in a hazardous buildup of hydrogen gas. If the cemented waste could be treated with the supercritical carbon dioxide process, dangerous chemical reactions would be eliminated.

The Lab’s supercritical carbon dioxide research is funded internally through the Nuclear Materials Stabilization Technologies group. Commercial research continues through agreements with Materials Technology Limited and Custom Building Products of Seal Beach, Calif.

Supercritical CO2 and flyash

Subject: UFTO NOTE — Supercritical CO2 and flyash
Date: Fri, 17 Jan 1997 18:06:44 -0800
From: Ed Beardsworth <edbeards@ufto.com>

————————————————————–
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
| http://www.ufto.com edbeards@ufto.com
————————————————————–

Supercritical CO2 turns flyash into valuable products, toughens common materials

UFTO has established contact with a small company in Reno NV, Materials Technology Ltd., which has patented a process that uses supercritical CO2 to harden and seal concrete, and turns wastes like fly ash and sludge into materials which are strong, fireproof and waterproof.

Los Alamos National Lab has been actively testing the process for use in radioactive waste storage, and is issuing a press release today, January 20, citing its remarkable simplicity and tremendous implications and wide ranging applications. Stories may appear in the Wall Street Journal and elsewhere in the national press. Also see Scientific American, November 96, page 40, for a good overview of the technology.

Basically, SC CO2 has zero surface tension, and soaks completely through materials, effecting chemical and structural changes instantly that otherwise can take centuries (e.g., in the case of concrete–which hardens gradually over time).

The company met recently with top officials at DOE and received an enthusiastic response. UFTO has developed close contacts with the principals, who are looking for utilities to work with them. (One concept is to co-locate production of these materials at power plants, and use their ash and CO2.)

I have additional information. You can also contact them directly, or browse their Web site at www.mtltech.com.

Contact: Roger Jones, Materials Technology Ltd. Reno NV 702-852-2320, fax 702-852-3035