Posts

Substation Power Quality System

Sandia is developing a proposal for a Substation Power Quality System (SPQS) project and needs industry input. Attached below are the text of a powerpoint presentation and a list of questions. There hasn’t been much involvement yet from utilities, so UFTO companies are especially encouraged to respond directly to Sandia with comments. The central question now appears to be: “Are utilities or large end users interested in a substation level power quality system?”. (There will also be a presentation at the PowerSystems World ’98 conference in Santa Clara, CA on Nov. 11.)

The DOE Energy Storage Systems Program at Sandia has been working with industry and other laboratories for several years on storage systems for substation power quality applications.

Over the last three years, DOE and Sandia worked closely with Public Service of New Mexico on a project with the intent of developing and demonstrating a substation power quality system. Industry partnerships were to be formed for the development phase, and a demonstration site was chosen at Sandia. Recent market downturns coupled with turmoil in the electric utility industry prevented the completion of this project. The DOE Energy Storage Program is still committed to working with industry on the development and testing of substation level, mid-voltage power quality systems.

The system as currently conceived would operate at the 12-15 kV, 2-6 MVA level. It would correct power quality problems originating upstream of the substation in the transmission line system or downstream in adjacent distribution system feeder lines. Open questions exist regarding the required ride-through time, technology to be employed, and the location for such a demonstration. This is anticipated to be a three-year project. The intent is to form a cost shared partnership to design, construct and field a system in this power range.

Sandia is very interested in obtaining comments on the Utility and Electricity provider industry interest in such a project, and feedback from energy storage system suppliers on the technology available for this type of system.

————-(text of powerpoint vugraphs)——–
Substation Power Quality Project

Dean Rovang, Abbas Akhil, John Boyes
Sandia National Laboratories, Albuquerque, NM

(Oct. 7, 1998, ESA Fall ’98 Meeting, Atlanta, GA)

— Why Are We Here?
Discuss the ESS/SNL perspective on a Sub-station Power Quality System (SPQS)
Project
Past motivation and future expectations
History of project at SNL with PNM
SNL’s performance expectations for PQ system
Obtain industry perspective
Industry perspective on SPQS market
Industry needs of system performance:
Power level, ride through, footprint
Describe SNL’s expectations for further work
Competitive, cost-shared proposals
RFI followed by RFP

— Past Motivation
PNM’s experience with large hi-tech customers in their service area
Traditional UPS solutions did not solve all PQ problems
PNM was seeking a utility-level solution
SNL advocated a SMES solution at a mid-voltage level
SNL Superconductivity Program
Preliminary thinking indicated 1 – 2 second ride through was adequate

— Project History
PNM and SNL formed an Industrial Advisory Board (IAB)
Primarily semiconductor manufacturers
Define system performance requirements
1 – 2 second ride through was thought to be adequate
“Baseline” PQ system concept with 2 second ride through
12.47 kV, 22.4 MVA
SMES system size was 42 MJ

— Other IAB input
Cost must not only be competitive, but aggressively competitive
Not UPS, limited ride through
It protects entire load, people expect lower $/kVA
Demonstrate device at someone else’s facility
Some factors motivated rethinking project scope
Cost estimates of $17 million for baseline system
4 second sag recorded at customer site

— Revised Baseline system was proposed
SNL advocated idea of “meaningful yet supportable” demonstration
6 MVA size: matches SNL loads
Split-bus concept at Substation 41
Use battery to reduce cost and meet ride through requirements
SNL and PNM pursued CRADA for demonstration at SNL site
CRADA package was prepared but not executed
Project canceled

— SPQS STILL MAKES SENSE
Mid-voltage level is the next logical step in the evolution
of PQ systems
Industry wants to develop SPQS technology
Provides vehicle for Utilities to deliver Premium Power
Whole facilities and multiple customers can be protected
in a Premium Power Park concept
Utility will have control of PQ system at the substation level
Short power interruptions can be corrected at one place
Voltage sags are not always corrected by existing systems
Economy of scale

— Substation Power Quality System:
Correct voltage sags/swells and momentary outages from transmission lines or
adjacent feeder lines

— SNL Expectations for Future SPQS
Interconnection voltage: 12 – 15 kV
System power: 2 – 6 MVA
Ride through options:
2 – 8 seconds for voltage sags
up to 30 seconds for 3rd re-closer requirements
1/4 cycle switch time
Storage technology insensitive
Turnkey system
Modular design, outdoor installation
Self-contained energy storage module(s) – eliminate need for building
Minimize footprint

Demonstration preferred at customer site; alternately at SNL
Innovative power conversion and system design
Prefer not paralleling existing small systems to meet performance
Encourage formation of user/supplier consortia
Cost-sharing of 50-80% by industry
SNL contribution expected to be $1.5-2.0 M over 3 years
Time to demonstration – 3 years
Place contract in FY99
System build FY00
System installation and testing FY01

————————————–
QUESTIONS
————————————–
Questions For The Utility/Electricity Provider Industry

1. Are Power Quality solutions at the substation location
useful to you?
2. What voltage(s), in mid-voltage range, are of interest?
3. What is the minimum power level of interest?
4. What power quality events should this system address?
5. What ride through time should this system be capable of
servicing?
6. What problems would this system create that must be addressed
in the design phase? Reconnection? Siting? Safety? Control?
Maintenance? Etc.?
7. What type of sites would benefit from this system?
8. Are there any potential sites in your system?
9. Are you interested in hosting the site?
10. Do you see the need for this system now? In the near
term (1-3 years)? In the long term (>3 years)?
11. What would be a cost goal for such a system?

Questions for the Power Quality System Industry

1. Are the technical specifications in the ballpark?
2. Is the schedule estimate in the ballpark?
3. What are the technical issues in the proposed system?
4. Are the power electronics for the mid-voltage specification
ready for commercialization? If not what is the state of
the art?
5. What are the cost drivers of a mid-voltage Power
Quality system?
6. Who should perform the system integration function?

Questions for All

1. What kind of partnerships/consortia/collaborations could
be formed to pursue this system? Cost Sharing? Intellectual
property rights? Project responsibility? Etc.?
2. What other information is necessary for your company to
participate in this project?
3. What other information is necessary to start this project?
4. Other questions or comments:

___ Indicate if you would like emailed summaries of ESA meeting discussion
and future communications on the SPQS project.
Name:
Company:
Telephone:
Fax:
Email:

Please Return to: John D. Boyes, Sandia National Laboratories
Telephone: (505) 845-7090 Fax: (505) 844-7874
Email: jdboyes@sandia.gov