Posts

Energy Stg Assoc Meeting next week

We’ve just gotten late word of this meeting. Some of you are active in the ESA, but many are not. I will attend.

Energy Storage Association Fall Meeting
The Value of Energy Storage in a Restructured Utility Market
Sacramento, California
November 18 -19, 1997

————————————–
Dear ESA Supporter:

Our upcoming Fall meeting in Sacramento is shaping up to be our most exciting to date. Our meeting location represents the seat of change for the largest transformation in the US electricity industry. It further represents a location for new opportunities in our emerging energy storage industry.

Our agenda includes presentations that will be informative for both new and long-standing members. Invited speakers will present the following:

– Emerging California Energy R&D Focus in 1998 Responsive to Assembly Bill 1890 (AB 1890)
– Green Power Markets in California
– International Renewable Energy Markets and the Need for Energy Storage
– Emerging New Energy Storage Products
– DOE/Sandia Solicitation for Renewable/Storage Projects
– Remote Areas Power Supplies International Project (RAPSI)
– Ongoing Program and Project Status
– New Products and Services from the ESA

The ESA continues to improve its products, structure, and organizational agenda. We are attracting new members, participating with DOE on common interests, and working with our board to define our agenda and strengthen our organization. Please consider board membership (contact Abbas Akhil, our nomination committee chairman) to help shape the future of our organization. At a minimum, please share your thoughts and ideas with our chairman, a board member, or myself.

Please contact our office if we can answer any questions regarding out upcoming meeting. I look forward to greeting you in Sacramento.

Sincerely,

ENERGY STORAGE ASSOCIATION
Jonathan W. Hurwitch
Executive Director

—————————————————————-

Energy Storage Association Fall Meeting 1997
Preliminary Agenda of Invited Speakers
—————————
Monday November 17
ESA Board Meeting 12:00 noon – 6:00 pm
————————–
Tuesday November 18

Feature Forum
Denise Zurn, Chairwoman 8:30 am – 10:45

Key Note Speaker
Dr. David A. Rohy, Vice Chairman, California Energy Commission
California’s Commitment to Maintaining Research and Development in a Restructured Electricity Market

Jan Hamrin, Director, Center for Resource Solutions
California Utility Restructuring and Emerging Green Power Solutions

Hank Zaininger, Power Technologies, Inc.
Independent System Operator Reliability Study

Peter Lowenthal, US Export Council for Renewable Energy/Solar
Energy Industries Association
International and Domestic Markets for Renewables/Storage (includes the latest on the Million Solar Roofs Initiative)

Anthony Price, National Power
Energy Storage in the Competitive Market in the UK

Don Osbourne, SMUD
Pioneer Program and Photovoltaic Manufacturing Initiative
————————–
Tuesday November 18

Technology Forum
Richard Schweinberg, Chairman 11:00 am – 12:30 pm

Mike Stern, Utility Power Group
UPG Renewable/Storage Projects

Mike Davis, Golden Genesis Company
Electricworks™ PV/Battery Village Power Systems

Doug Danley, Orion Power
Apex Power Systems

Gene Weaver, International Computer Power
Dynamic Energy Storage Systems

————————–
Technology Forum (continued) 1:45 pm – 3:00 pm

J. Roberts, S.F. Gyro Dynamics, Incorporated
Lee McLane, Precise Power Corporation
Brad Walter, Piller, Incorporated
Robert Hall, Holec, Incorporated
John Comstock, Power Systems and Controls
Stacy Uzick, Lucent Technologies
————————–

ESA Business and Products 3:15 pm – 4:45 pm

Board Summary / Board Elections – Phil Symons, ESA Chairman
ESA Business Plan ’98 – Jon Hurwitch, ESA Executive Director
ESA Products – Jon Hurwitch / Brian Highsmith, ESA Coordinator
————————–

ESA Dinner 6:00 pm – 8:00 pm

“Opportunities for Industry in the US Department of Energy /
Sandia National Laboratories Renewable Storage (RGS) Project”

GUEST SPEAKERS:
Dr. Christine Platt, Program Manager, Energy Storage Systems, US Department of Energy
Mr. Paul Butler, Program Manager, Energy Storage Systems, Sandia National Laboratories
————————–

Wednesday November 19

Storage 2000: A Government/Industry Partnership to Break Market Barriers
Phil Symons / Jon Hurwitch, Moderators 8:30 am – 10:15am

Utilities – Richard Schweinberg / Denise Zurn
Manufacturers – Robert Flemming / George Hunt
Research – Paul Butler / Steve Eckroad
————————–

Market Analysis Forum 10:30 am – 12:00 pm

Dr. Jerome Cole, ILZRO
Remote Area Power Supplies International (RAPSI) Project

Abbas Akhil, Sandia National Laboratories
Metlakatla Alaska Workshop & EESAT International Conference

Pramod Kulkarni, California Electric Commission
Value of Storage in California

Shiva Swaminathan, SENTECH, Inc.
Assessment of Power Quality Opportunities for Storage in the US

Project Status Forum 1:30 pm – 4:30 pm

Jeff Corbett, Virginia Power
DOE Sponsored Transportable Battery Energy Storage System

Rao Thallam, Salt River Project
EPRI Sponsored Transportable Battery Energy Storage System

Don Sostrum , Power Engineers
Alaska/Golden Valley Railbelt Battery Energy Storage Project

George Hunt, GNB Technologies
Metlakatla Pioneer Battery Energy Storage System

Paula Taylor, Energetics, Inc.
Virtual Energy Storage and Generation Systems

Sam Edwards, Naval Surface Warfare Center
Status of Department of Defense Renewable/Storage Projects

————————–

Reservations and Accommodations:
Sheraton Rancho Cordova Hotel Sacramento
11211 Point East Drive
Rancho Cordova, CA 95742
1-800-851-2400 (in CA) or 1-800-325-3535 (outside CA)
*Please mention ESA when making hotel reservations.
Block cut-off date is Nov. 3, 1997

Registration:
Please complete the attached form and return with appropriate fees by Nov. 10th to:

ENERGY STORAGE ASSOCIATION
4733 Bethesda Avenue, Suite 608
Bethesda, MD 20814

Tel: (301) 951-3223 Fax: (301) 951-3235
Email: bhighsmi@switch.smart.net

** Check out our website at: www.energystorage.org **

Airport: Sacramento Metro Airport Attire: Business Casual
Shuttle: Super Shuttle, $12 each way. Optional Tours: Thurs. 11/20

——————
US Department of Energy and Energy Storage Association to Host Renewable Generation Storage (RGS) and Storage 2000 (St2K) Dialogue at Fall ESA Meeting

Two sessions are planned at the Fall 1997 ESA meeting to further discuss government industry partnership projects and ideas to break market barriers for energy storage technologies. The first is a dinner to discuss the forthcoming RGS project and solicitation to be released by the DOE Energy Storage Systems Program in Spring 1997. The second is a panel session on the Storage 2000 initiative to discuss the concept and specific ideas on what this initiative could be.

What is Storage 2000? The initiative was proposed and endorsed by the ESA at its initial meeting in 1996 as a flagship project with its objective to stimulate and accelerate technology development for emerging markets (development of integrated technologies and the installation of energy storage into transmission, distribution, and customer service) for energy storage with a goal of 200 MW worth of project commitments by the end of 2000.

Storage 2000 was proposed as a joint US Department of Energy/industry initiative to deploy 200 MW of energy storage. The program was to emphasize supporting business venture development to develop and sustain the markets for these technologies as the US restructures its utility industry from a regulated to a competitive industry. The ESA proclaimed a need for this commercialization initiative to accelerate emerging markets by building volume, creating a manufacturing infrastructure, buying-down early risk into new markets, and validating the benefits of new applications. Applications for energy storage in this initiative would include:

Renewable energy/storage projects that would validate the benefits of grid-connected wind and/or photovoltaic systems

Customer service projects that will validate the use of energy storage to provide improved productivity through power quality, peak shaving, outage protection, and demand-side management premium services.

Since 1996, ESA members and staff have continued a dialogue with DOE to develop the political and programmatic concepts for Storage 2000. Creation of an Industry User’s Group for DOE has supported this effort. The programmatic plans put forth by DOE combined with the industry voice of the ESA has resulted in increased budget support for the DOE Energy Storage program. This increase includes support for the Storage 2000 concept and DOE is asking the “industry voice” of the ESA to make recommendations on the directions of this technology demonstration and validation initiative. The session at the ESA meeting is to define the mutual interests of both industry and government and move forward on a program that can open up commercial market opportunities for the technology.

What is RGS?
The Renewable Generation and Storage (RGS) project is being viewed as the first project under the Storage 2000 umbrella aimed at technology improvements to validate the benefits of integrated wind and/or photovoltaic systems. This multi-year project includes the design, development, and testing of a prototype integrated renewable/hybrid system consisting of a matched PV array, inverter, and energy storage system integrated and user-ready for the customer. DOE anticipates operating the prototype in stand-alone mode in a test bed located at customer sites. Partners will be selected through a formal solicitation process with contract(s) awarded late 1988. Preliminary input for the photovoltaics community was received at a session of the IEEE PV specialists Conference. DOE is urging your attendance and participation at the ESA meeting as they seek input from the energy storage community prior to the final release of the solicitation.

Plan to attend these sessions to express your opinions to DOE officials regarding the need, objectives, and plans for these projects. ESA your participation in these meetings to meet potential strategic partners and competitors for the upcoming solicitations and to further your efforts to commercialize energy storage into new and expanding markets.

___ Mr. ___ Ms. ___ Dr.
Last Name: First Name: Name for Badge:
Title
Organization:
Address:
City: State: Zip:
Telephone: Fax: E-mail
Date of Arrival: Date of Departure:
———————————-
___ Meeting Registration…………….$250.00

NON-ESA Member
___ Meeting Registration…………….$1000.00
___ ESA Invited Speaker/Participant……$250.00
___ Sponsored Registration……………$250.00
Sponsor’s Name:
Optional Tours: ___ SMUD ___ Sacramento Airport

___ Energy Storage Dinner…………………….No charge
(Buffet Dinner and Speakers, Tuesday, 11/18/97)

TOTAL FEE ENCLOSED : $
*If you have any special needs (dietary, physical, etc.,) please
contact the ESA staff, at the number below, for assistance.
Will you be traveling with a guest/family? ___ yes ___ no
How Many? Guest Name(s):

Fees Payable to : ENERGY STORAGE ASSOCIATION*
Please return completed copy and fees by Nov. 10h to:
ENERGY STORAGE ASSOCIATION
4733 Bethesda Avenue, Suite 608
Bethesda, MD 20814

* Acceptable forms of payment: Personal or Company Check, Money
Order, Cash. Sorry, No Credit Cards accepted.

ENERGY STORAGE ASSOCIATION
TEL: (301) 951-3223
FAX: (301) 951-3235
E-MAIL: bhighsmi@switch.smart.net

Battery Market Studies from Sandia

Battery Market Studies from Sandia
Aug 14, 1997

Sandia has issued two new reports on markets for batteries:

——————-
“Photovoltaic Battery and Charge Controller Market and Applications Survey”, Hammond, Turpin, et.al, SAND96-2900, December 1996

Surveys were conducted with PV system integrators, battery makers, and PV charge controller makers, to a) quantify the market for batteries shipped (in 1995), b) quantify market segments by type and application, c) characterize controllers used in PV systems, d) characterize operating environments for storage components in PV systems, and e) estimate the market in the year 2000.

In 1995, worldwide shipments for PV batteries totalled $300 million, with a U.S. accounting for just over 10%. In either case, system integrators account for no more than 14% of batteries sold for PV.

——————-
“Battery Energy Storage Market Feasibility Study”, Akhil and Kraft, SAND97-1275/1 and SAND97-1275/2, July 1997. (The first, 1275/1, is a short version of 25 pages. The second, 1275/2, is the long version, with about 200 pages, which will be available sometime in September.)

The purpose of this study was to quantify the energy storage market for utility applications by surveys of electricity providers, battery storage system vendors, and others. Specifically, goals were a) to gather perceptions in the battery energy storage (BES) and utility industries on desired features and comparison with other storage options; b) to estimate BES markets through the year 2010; and c) to provide Sandia and DOE with inputs to the Energy Storage System Program effort.

——————-
Reports can be obtained through NTIS or directly from Sandia. Send requests to Imelda Francis, 505-844-7362, fax 505-844-6972, or: igfranc@sandia.gov.

ORNL Utility Survey

Subject: UFTO Note — ORNL Utility Survey
Date: Wed, 09 Jul 1997 11:49:03 -0700
From: Ed Beardsworth

The Engineering Technology Division at Oak Ridge sent out a survey to a list of utilities recently, with a cover letter from Ed Fox, the division director. Some of you have already seen it, and I have the names of who it was sent to in your companies if you want them.

The stated purpose is to increase utility awareness of ORNL R&D, to obtain feedback on the relevance to utilities of that work, and on priorities for additional R&D. Also, they want stronger ties to utilities and potential users of ORNL work…a goal certainly congruent with UFTO!

Ed Fox can be reached at 423-574-0355, ecf@ornl.gov

The survey is being administered by:
Scott R. Penfield, Jr., Technology Insights
P.O. Box 205, Signal Mountain, TN 37377-0205
423-842-8078 Tel 500-346-9500 Alt. Tel
423-886-3225 FAX penfield@ti-sd.com

The text of the survey is attached below, and includes a number of technologies previously reported by UFTO.

————————————————————–
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
| http://www.ufto.com edbeards@ufto.com
————————————————————–

ORNL SURVEY OF UTILITIES

Part I: Current ORNL R&D Programs

The following topics briefly summarize ongoing R&D programs at ORNL. For each, please indicate whether you were previously aware of the work and provide a rating (on a scale of 1-10) as to how relevant the work is to your current needs. (If you were not previously aware of an individual R&D item, please base your rating on the summary.) If you wish further information on any topic, please so indicate.
WWW ADDRESS FOR THE ENGINEERING TECHNOLOGY DIVISION
HOME PAGE: http://www.ornl.gov/etd/etdfctsh.htm

—————————–
1.0 PLANT/EQUIPMENT DIAGNOSTICS AND CONDITION MONITORING
The following technologies provide for monitoring the condition of machinery in service, on-line diagnostics for evaluating faults, plus R&D into effects of machinery aging. The objective is to relate appropriate maintenance or replacement actions to the actual condition of the machine.

1.1 Electrical Signature Analysis (ESA)
Data characterizing electrical currents and voltage waveforms to/from motors, generators and similar devices are obtained and recorded, using non-invasive probes. ORNL-developed analysis techniques are applied to the resulting data, leading to powerful insights into the health and performance of the electrical machine and the system and/or facility in which it is installed. A typical utility application involved the evaluation of transient loads in motor operated valves at a Carolina Power & Light nuclear plant. More recent developments include improved data analysis techniques and methods for the integrated monitoring of complete systems.

Status: Early forms of ESA are being used in a range of industrial applications, including utility power plants. Licensees include B&W/Framatome and ITT Movats/Westinghouse and Public Service Electric and Gas of New Jersey. More recent developments are available for licensing and/or joint development.

Previously aware of this research: _ Yes _ No
Request additional information: _
Relevance to current needs (please circle):
(Low) 1 2 3 4 5 6 7 8 9 10 (High)

1.2 Non-Intrusive Voltage and Power Factor Monitoring
ORNL is evaluating a series of new technologies for obtaining high voltage (>480V) waveforms and power factors, without contact and without the need for potential transformers. These technologies have significant potential in power quality monitoring applications.

Status: These technologies are in an early stage of development and evaluation. They are available for licensing and/or joint development.

1.3 Check Valve Monitoring
The function and health of check valves are evaluated, using a combination of magnetic and vibration sensors. Lack of adequate function and deterioration can be detected, without the need for removal or disassembly of the component.

Status: This technology has been licensed to several service vendors, including B&W/Fram- atome and ITT Movats/Westinghouse. Consolidated Edison is also a licensee.

1.4 Improved Eddy-Current Material Defect Detection
ORNL is developing a new technology for improved defect detection and imaging in non-magnetic materials. In laboratory tests, cracks in a perforated aluminum plate, located behind a 60 mil solid aluminum plate, are clearly imaged. In addition to aircraft inspection (the initial target for this innovation), steam generator tube inspection is a potential application of this new eddy-current based technique.

Status: This technology is in the early stages of development.

1.5 Effects of Aging in Machinery
ORNL has developed a vast database and associated reports on the effects of machinery aging. Information and expertise are available on the general principles of machinery aging as well as the specific effects of aging on individual components, machines and systems.

Status: The database was developed in support of NRC investigations into the effects of aging on nuclear power stations. It is available in the form of reports at the present time. Work is ongoing to develop methodologies to support condition based maintenance decisions.

—————————–
2.0 PLANT INSTRUMENTATION & CONTROL
ORNL’s capability for conceiving, prototyping and implementing advanced instrumentation and control (I&C) capabilities extends from the I&C support of experimental work throughout the laboratory and from supplying innovative sensor and control technologies to federal agencies, utilities and private industry. The following are examples of related utility applications.

2.1 Plug-in Compatible Instrumentation and Control Upgrades
ORNL has developed and prototyped a concept in which application-specific integrated circuits (ASIC’s) mounted on a motherboard replace corresponding analog modules originally installed in utility power plants. The simplicity of the individual ASIC’s reduces concern with common mode failures, a current issue with complex software driven systems. The resulting plug-in compatible replacement modules simplify installation and operation, because rewiring is not required and because changes to operating procedures are minimized.

Status: ORNL is supporting EPRI and the Westinghouse Owner’s Group in the advancement of this technology. A prototype safety system module has been fabricated and is currently undergoing testing.

2.2 Accurate On-Line Measurement of High Temperatures
ORNL has developed a technique for continuous in-situ calibration of resistance temperature detectors. The goal is to maintain an accuracy of 0.5% (°F) under actual operating conditions and to extend the range of useful measurement from about 900°K (1200°F), at present, to 1300°K (1800°F). A typical application would be measuring steam temperatures for on-line determination of plant efficiency.

Status: The technology has been developed to a pre-commercial form and feasibility has been established through demonstrations at the Diablo Canyon and Connecticut Yankee nuclear stations, as well as tests in the Kingston Steam Plant (EPRI I&C Facility).

2.3 Solid-State Hydrogen Sensor
ORNL and EPRI are developing a small, solid state hydrogen sensor for nuclear plant containment monitoring. Other utility applications might be in conjunction with hydrogen cooled generators, battery banks, etc.

Status: The sensor is patented and available for licensing. Tests have been conducted in air, nitrogen, argon, steam and transformer oil and for H2 concentrations of 0.5% to 30%.

2.4 Automated Measurement of EMI/RFI
ORNL has developed and used an instrument to monitor and record ambient electromagnetic interference/radio frequency interference (EMI/RFI) in power stations. The system is capable of non-obtrusive, unattended operation over several-month periods.

Status: Available now for licensing or use.

—————————–
3.0 NON-LINEAR TIME-SERIES ANALYSES
The catchy but misleading name “Chaos” has often been associated with a family of advanced non-linear time-series analysis techniques. In reality, these methods allow a degree of order to be
discerned for what otherwise appear to be a series of highly random events. Examples of practical utility applications are provided below.

3.1 Improved Combustion Control
Non-linear analysis can be used to analyze and optimize fossil power plant burners, fluidized bed combustion systems and, potentially, gas turbines for higher efficiency and improved NOx control.
Status: An early application was the characterization of fluid bed combustion systems, where an objective was to avoid unstable operating regimes (e.g., chugging). More recently, the potential of this technology for improving fossil burner control is being developed through a project involving EPRI, ORNL and B&W.

3.2 Failure Prediction
There is a further potential for applying non-linear analysis to advanced machinery diagnostics/ failure prediction (e.g., in turbine-generators). Bearings, in particular, appear to exhibit chaotic behavior in advance of certain failure modes.

Status: Non-linear analysis is being evaluated in conjunction with diagnostics and condition monitoring techniques, such as electrical signature analysis (see above). Westinghouse has expressed an interest in bearing diagnostics.

—————————–
4.0 TRANSMISSION AND DISTRIBUTION

ORNL is developing technologies for automating the control of transmission systems, increasing system capacity and providing an improved understanding of the underlying costs of ancillary services.

4.1 Real-Time System Control
ORNL, DOE and EPRI are developing the technology for real-time monitoring and control of widely distributed transmission systems. This compares with current practice in which responses to disturbances are predetermined on the basis of previously completed analyses. The real-time system will employ an array of monitors, with outputs time-synchronized by satellite clocks. Artificial intelligence techniques will be used to recognize and appropriately respond to disturbances.

Status: This work is in the early stages of development.

4.2 High Capacity Transmission
ORNL has participated in R&D for increasing the capacity of high-voltage transmission lines. Included was testing of a high phase order line, which has the potential for transmitting up to three times the power of a standard single circuit AC line.

Status: The potential of this technology has been confirmed through the operation of a 1.5 mile test section, sponsored by EPRI, DOE, NYSERDA, NYSEG and ESEERCO. Given the current transition to independent operation of transmission capacity, no follow-on work has yet been identified.

4.3 Cost of Ancillary Services
One challenge in establishing the pricing basis for open access to electrical transmission systems is placing a value on ancillary services (scheduling and dispatch, load following, system protection, VARs, energy imbalance, and real power losses). Initial estimates developed by ORNL range from $1.5-$6.8/MWh, with an average of $4.1/MWh. By contrast, the FERC pro-forma schedule includes an allocation of $1/MWh for ancillary services.

Status: An initial report, based on an analysis of 12 utilities is now available. Follow-on work is recommended to establish a consistent framework for estimates.

5.0 POWER ELECTRONICS
This area includes research in power electronics, which is finding broad applicability in power quality, energy conversion and storage, adjustable speed drives, transmission, links, etc.

5.1 Resonant Snubber Inverter
The Resonant Snubber Inverter (RSI) is a power electronics innovation that employs a special resonant circuit to reduce losses during switching. Tests at ORNL have shown efficiency to be improved by 15 percentage points at half speed and 5 percentage points at rated speed. Elimination of associated voltage spikes reduces voltage stresses (leading to higher reliability), and essentially eliminates electromagnetic interference. Potential uses include power conversion for energy storage devices (e.g., flywheels, ultracapacitors, etc.) and adjustable speed drives.

Status: The RSI is currently being developed at ORNL for a number of specific applications.. The technology is available for joint development and/or licensing.

5.2 Multilevel Converter
The Multilevel Converter is another power electronics innovation that allows synthesis of high voltage waveforms, using capacitors as voltage dividers. Potential applications include DC links, static VAR generators and high voltage variable speed drives, as well as power conversion from renewable energy sources (such as photovoltaic arrays) or battery-fed systems. The ORNL technology eliminates the need for transformers, which are a significant source of cost and energy losses in conventional systems. A problem with capacitor based systems is the tendency to develop an imbalance between voltage levels when real power is being transferred (this is not a problem in static VAR generator applications). The unique contribution of ORNL is a new approach for maintaining the desired voltage balance across the capacitors, when real power is being transferred.

Status: An 11-level (21-level phase to phase) multilevel converter, employing insulated gate bipolar transistors (IGBTs) is working in the laboratory at ORNL. This system is prototypical of a 60kV multilevel converter using gate turn-off thyristors (GTOs).

—————————–
6.0 INFORMATION MANAGEMENT AND OPERATIONS ANALYSIS
This area comprises R&D on information management and operations analysis methodologies which support the management decision process.

6.1 Integrated Operational and Economic Models
ORNL has developed an extensive capability for operations and economic modeling techniques that support the management decision process. Alternative courses of action can be evaluated on a probabilistic basis, taking into account both the likelihood of various outcomes and their technical and economic consequences. Typical examples in which utilities might apply such techniques include evaluating the business potential of a new energy storage device, or determining the likelihood that a nuclear facility would be profitable over its remaining lifetime.

Status: These modeling techniques have been extensively applied. A recent example is a probabilistic assessment (for DOE) of the economic viability of each of the nuclear plants currently operating in the U.S.

6.2 Real-Time Power Scheduling
ORNL developed a “Power Advisor” to guide the operations of the Paducah, KY uranium enrichment plant in response to real-time electric power pricing inputs. The model provides a basis for deciding whether blocks of power at a given price should be accepted or whether it is more cost effective to curtail plant operations. The model includes consideration of the technical limitations of the facility, as well as the economic impact on the product bottom line.

Status: In place and operating at Paducah, KY.

6.3 Performance Indicators
The performance indicator methodology developed by ORNL is an operations management process for filtering and organizing the vast amounts of data generated in a complex management environment. The key objective is to focus management attention on activities that have the most influence on organizational goals, such as economic return, operational efficiency, safety, etc. The process starts with the selection of key performance indicators. These individual measures of performance are subjected to additional analysis and weighting, resulting in composite indices representative of overall performance, analogous to a stock market index. Feedback mechanisms are included to optimize information flow and to respond to organizational changes over time.

Status: Currently employed by DOE for managing the DOE occupational safety and health program.

—————————–
7.0 UTILITY/CUSTOMER TECHNICAL SUPPORT
The following research areas would potentially support both utility and utility customer technology support needs.

7.1 Electric Machinery Analysis
ORNL has developed an improved motor equivalent circuit model to more accurately estimate the operating characteristics of electric motors. Input to this computer-based tool can start from name plate data and increased accuracy can be obtained with supplemental calibration measurements (e.g, speed and current). Once calibrated for a given machine, the method can be used to accurately predict loads, currents, efficiency, etc. As a result, the need for additional monitoring instrumentation may be reduced in some cases.

Status: The model is complete and available through the DOE Motor Challenge Program

7.2 High Temperature Thermography
Techniques developed by ORNL offer improved capability for accurately measuring high temperatures. Using emissions from thermographic phosphors, temperatures can be measured over a wide range (cryogenic to 1600°C [2900°F]) and without the need for physical contact.

Status: This technology has been applied to several industrial processes. Initial applications have included the first stage vanes of turbine engine gas generators and the surface of steel exiting a molten zinc bath in a galvanizing process.

7.3 Electric Machinery Test Facility
ORNL has developed a flexible and well instrumented Electric Machinery Test Facility. The current capacity is 100 hp, but is now being expanded to 700 hp. During testing, loads can be varied over a wide range. Input voltage and currents can also be varied to simulate various operating demands, as well as a range of power quality situations (e.g., voltage imbalances, harmonics, etc.)

Status: The Electric Machinery Test Facility is a National User Facility available for use by private sector entities for testing and qualification of motors, generators and related components at nominal cost.

7.4 Pump Test Facility
ORNL recently commissioned a Pump Test Facility, with a design capacity of 100 hp. The configuration of the facility is highly flexible in terms of flow configuration, installed components and provisions for instrumentation and monitoring.

Status: The Pump Test Facility is a National User Facility available for use by private sector entities for testing and qualification of pumps and related components at nominal cost.

7.5 Buildings Technology Center
ORNL is actively involved in developing technologies to improve the efficiency of buildings and installed equipment. The Buildings Technology Center (BTC), established at ORNL in 1994, includes a large scale climate simulator and a hot box for testing components (walls, windows, etc.), as well as facilities for testing equipment (e.g., heating and air conditioning).

Status: The BTC is a National User Facility available for use by private sector entities for testing and qualification of building components at nominal cost.

Part II: Priorities for Additional R&D
Please indicate below up to three areas of R&D that would most help your organization to meet its objectives.
1.
2.
3.

Part III: Contact for Liaison with ORNL

Please identify one or two individuals that could serve as a liaison with ORNL managers. We will keep them informed of new innovations at ORNL and request their input regarding utility R&D priorities in the future.
1. Name Title Organization
Address
Tel FAX E-Mail

2. Name Title Organization
Address
Tel FAX E-Mail

Bellcore Flywheel Forum

Subject: UFTO Note – Bellcore Flywheel Forum
Date: Mon, 10 Feb 1997 10:06:41 -0800
From: Ed Beardsworth

————————————————————–
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
| http://www.ufto.com edbeards@ufto.com
————————————————————–

Attached is a draft proposal received this morning from Bellcore for its Technical Forum on Flywheel Requirements. (See earlier UFTO note Jan 28).

Additional details would be provided in the final, if and when outside organizations express serious interest in participating. Their present understanding is that the funding fee will be $50K per participant. It would probably be OK for several organizations to join as a “team”, entitled to one collective vote in any “standards forum”.

————————————————————–

Bellcore Technical Forum Flywheel Energy Storage System Specification Work Proposal for Initial Generic Requirements

Short-duration backup power for telecommunications systems has traditionally been provided by lead-acid or Valve Regulated Lead Acid (VRLA) batteries. These batteries are susceptible to temperature, and can potentially cause disasters (service outages plus significant damage to equipment and personnel) under certain circumstances. A new energy storage technology that can eliminate most of the problems associated with batteries are Flywheel Energy Storage Systems (FESS) or electromechanical energy storage. However, this technology is in its infancy, and no requirements or standards on their performance, safety, installation, deployment, and use exist.

In addition, no guidelines or experience exists vis a vis its long-duration (20 years) in below-ground deployment. The Project described by this Proposal has as its goal the generation of an initial set of proposed incremental Generic Requirements (GR) to allow a FESS to operate and be integrated into the telephony outside plant network as a replacement for the conventional electrochemical (VRLA) batteries. The FESS will supply backup power to a communications load within the network. It may be installed at a remote site such as in the vicinity of a Controlled Environmental Vault (CEV), Electronic Equipment Enclosure (EEE), or pedestal in the outside plant environment, ranging in nominal sizes from 10 W to 10 kW, and capable of providing between 1 to 8 hours of reserve; i.e. reserve capacity possibly ranging from 10 Wh to 80 kWh.

The FESS is intended to be used as a direct battery replacement and needs to be “maintenance-free” with a life of at least 20 years in the harsh outside plant environment. In addition, the FESS is expected to be buried below ground besides CEVs, EEEs, and pedestals, and minimal construction, concrete or masonry work, is desirable at these sites. The units need to be efficient, reliable, and immune to environmental conditions of the outside plant. Modular sub-systems are desirable as they facilitate maintenance, are field replaceable, and provide graceful growth. At a minimum the GR should address the following:

– Safety – below-ground deployment, maintenance, testing, and use
– Performance and reliability – system, device, component
– Installation – emphasis on below-ground procedures
– Maintenance – routine and corrective
– Graceful planning – methods to support graceful growth.

The primary deliverable will be generic requirements document entitled Generic Requirements for Flywheel Energy Storage Systems for Telecommunications Applications, to be completed in December 1997. Successful completion of this Project should be viewed as a springboard for future work items which are not included in the scope of this Proposal. Bellcore currently has a 5 kWh above-ground FESS which is operational at its Chester, New Jersey Research and Engineering Center. A 100 Wh above-ground FESS will soon become operational.

During 1997 Bellcore hopes to install at least one other FESS, below-ground, at its Chester Lab. Experiences gained with these operating systems will provide valuable information regarding heat dissipation, reliability, maintenance, special problems, and other areas that relate to the suitability for telecommunications deployment. In addition, during 1997 Bellcore will compile information on FESS technology as it relates to telecommunications applications, focusing on below-ground installations and covering the following areas:

– Size and shape comparisons with batteries
– Heat dissipation
– Placement
– Installation and deployment
– Maintenance requirements
– Monitoring and alarms
-Integration into the power train of broadband power nodes and sites
– Economics
– Pricing and availability
– Accelerated life testing
– Reliability and mean time to failure (MTTF)

Lessons learned from this work will help generate the generic requirements for below-ground FESSs. This Project will also consider requirements extrapolated from existing relevant Bellcore documents, such as TR-NWT-000766, Generic Requirements for Valve Regulated Lead Acid Batteries [Issue 1, October 1, 1991]. Bellcore convened a symposium on the subject of employing FESS in telecommunications in July 1995 in San Diego, and held a safety forum on FESS on November 15, 1995 at Bellcore’s facility in Chester, New Jersey.

A major objective was to discuss the need for the FESS alternative, as well as the new Generic Requirements process, and the opportunity for direct industry funding and participation. Wherever feasible, relevant specifications of outside standards organizations will serve as references. However, it is anticipated that exclusive reliance on standards groups and other industry forums would result in procedures that would take longer to achieve than the accelerated 9-month time-frame planned for this project.

This time-frame depends upon the cooperation of all funding participants in the work of the Bellcore Technical Forum (BTF) and related process under which the requirements work is to be performed and involves variables which are not within Bellcore’s control. However, although Bellcore does not guarantee completion within the time frame, it is Bellcore’s objective to complete the requirements in question within that time frame and funding participants under this Proposal agree to cooperate in achieving that objective.

——- Bellcore reserves the right to withdraw this Proposal and to terminate its efforts with respect to the anticipated generic requirements, without incurring any liability to anyone, should there be in its opinion insufficient industry interest in funding participation in this Proposal and the related Bellcore Technical Forum efforts.

Bellcore Developing Specs for Flywheel Batteries for Use in Telecomm

Subject: UFTO Note – Bellcore Developing Specs for Flywheel Batteries for Use in Telecomm
Date: Tue, 28 Jan 1997 12:33:55 -0800
From: Ed Beardsworth <edbeards@ufto.com>

————————————————————–
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
| http://www.ufto.com edbeards@ufto.com
————————————————————–

Bellcore Developing Specs for Flywheel Batteries for Use in Telecomm

Bellcore (now owned by SAIC, but still representing the technical needs of the RBOCs) is developing what they call “generic requirements” for flywheel batteries to meet growing needs for extremely reliable back up power on the telecomm system. The key goals are high reliability, low maintenance and long life in what they call “outside plant batteries,” which support equipment in remote locations. Systems would range from 0.1 to 5 kWh, over several hours (i.e. relatively low power). Their view is that they have an existing need that provides a good first application and sizable first market. Their leadership could prove useful to the overall development of flywheel batteries, which may take on a much larger role in storage, power quality and uninterruptible power applications, where utilities have a strong interest.

They are inviting outside parties to participate with them in this process, as outlined in the announcement attached below. The cost schedule hasn’t been determined as yet.

Bellcore has had very little contact with utilities thus far, but they would like to, particularly to take into account issues of seismic effects. (Only one utility was represented at the safety forum in November 1995. Incidentally, the documentation of that meeting is available from Bellcore for a fee of $200.)

_______________________________________________________
INVITATION TO FUND AND PARTICIPATE
BELLCORE GENERIC REQUIREMENTS TO SUPPORT FLYWHEEL ENERGY STORAGE SYSTEMS (FESS) (NEW GR)

Bellcore has been active in the potential use of Flywheel Energy Storage Systems (FESS) in telecommunications for over three years. This was motivated by our involvement in dealing with the many problems associated with valve-regulated lead-acid batteries in the telecommunications outside plant environment. Bellcore envisions FESSs as eventually replacing those batteries in that environment and perhaps many other applications.

Bellcore convened a symposium on the subject of employing FESS in telecommunications in July 1995 in San Diego, and held a safety forum on FESS on November 15, 1995 at Bellcore’s facility in Chester, New Jersey. Bellcore has an experimental FESS test facility in Chester and has an operating 5kwh system and some smaller FESSs operating experimentally. Bellcore conducted a basic materials investigation in 1996 that consisted of iterative computer modeling and testing of the impact of carbon composites into steel containment targets. This has led to a three-dimensional finite element model that enables us to identify generic design requirements for containment regimes.

Bellcore now invites all interested members of the flywheel energy storage system industry and local exchange and interexchange carriers, and any other members of the telecommunications industry to fund and participate in the development of a new generic requirements document to specify functionality and operability requirements for FESSs in telecommunications applications.

Bellcore proposes to convene a Bellcore Technical Forum (BTF) for funders to address development of a new Bellcore GR covering proposed requirements for FESS applications. The BTF would consist of one or more meetings to:

– Scope out the issues associated with FESS functionality in telecommunications, as well as operational issues, such as Network Equipment Building Standards (NEBS), Lightning and Earthquake concerns, power concerns, and physical design. – Develop a schedule for funders’ participation in development of a draft GR – Determine if additional Industry input will be necessary – Produce and publish a Bellcore GR on FESS in Telecommunications.

It is expected that the development of the GR will take most of 1997 to complete.

Funders will have the opportunity to provide nonproprietary input into the technical descriptions of the material, to comment on all draft text, to receive the GR and Issues List Reports(ILRs), if any are funded, pertaining to this release of the GR, and to exercise other rights and undertake responsibilities as provided by the applicable funding agreements with Bellcore and by law. Interactions beyond any meetings with funders may be via letters, conference calls, faxes or electronic mail.

It should be noted that Bellcore does not make procurement decisions for any Bellcore client company. Bellcore activities that involve industry interactions in no way indicate a potential purchase or selection decision by any Bellcore client company.

Bellcore reserves the right to alter or withdraw this proposal if there is insufficient interest in this invitation.

If your company is interested in funding and participating in the development of these proposed Bellcore Generic Requirements, please contact Bellcore by March 31, 1997:

Lawrence M. Slavin Bellcore 445 South Street, MCC 1C-117B Morristown, NJ 07960
201-829-4330 201-829-5886 (FAX) lslavin@notes.cc.bellcore.com

DOE SBIR Commercialization Forum

Subject: UFTO Note – DOE SBIR Commercialization Forum
Date: Wed, 23 Oct 1996 09:21:35 -0700
From: Ed Beardsworth <edbeards@batnet.com>

————————————————————–
| * UFTO * Edward Beardsworth * Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
————————————————————–

Abstracts for 40 companies which were presented at the:

“Dawnbreaker DOE Commercialization Opportunity Forum”,
Washington DC, Oct. 8-9, 1996

These are small businesses that have received DOE SBIR funding, and who are seeking investors or business partners (or customers).

– Each one has prepared a business plan, with coaching by DOE commercialization consultants.
– The companies appear in order of interest to utilities–most interesting first (not a rigorous ranking).
– Last paragraph of text (appearing before Company name and address) was prepared by company itself.
– Other comments are by UFTO.
– You may disregard numbers appearing after title (n//m) :
n = interest rank ordering, and m = company # as listed in program materials.
– Companies are separated by a line that starts with two back-slash characters, which you can use to parse this long text record if you need to.

———————
Plant Environmental and Cost Optimization System (PECOS) ™: On-line software to minimize power generation cost
1//3 VERY Interesting
Integrates coal yard, boiler & NOx control, steam side operation and byproducts into a single cost function. (Competitors treat only one part) One year payback. Doing Coal Monitor Wkstn with TVA. (EPRI members can use TC $ towards installation.) Impressive and convincing story.

This company’s product is unique in its comprehensive approach, cost focus, and distributed architecture. This on-line software advises plant operators on settings to minimize controllable costs of power generation. The software covers all areas of plant operations such as dynamic coal sorting and blending, efficiency, control of all emissions, and disposal/sale of byproducts. The company has strong ties in the utility industry. It is currently testing the product on-line at two power stations, and sales to other plants are in negotiation. The software can also be adapted for other process industries. The company seeks a strategic partner which is either a utility or other organization with an existing base of services and/or sales in the utility industry to participate in an emerging market with a total size of $200,000,000 in the U.S. The partner will profit through appreciation of shares in a dynamic company by generating revenues through sales and implementation services for the product and by the synergistic growth of its other related businesses in the utility industry. (FOSSIL)

Praxis Engineers
Randhir Sehgal, President
852 N. Hillview Dr.
Milpitas CA 95035
408-945-4282
408-263-2821
———————
Cost-effective retrofit, ultra low-NOx coal burner which also removes SOx and ash
1//11 VERY Interesting
Retrofit replacement for PC burners at $60-90/kw installed (cheaper than scrubbers, GTs, buying credits or low S coal).
Rotating drum creates artificial x10 gravity for mini-fluid bed gasifier. Removes ash! NOx below 100ppm and SOx is 90% controlled. Use crush/pellet coal not pulverized. Good with RDF.

The Company has developed its patented Rotary Combustor (RC) to allow electric utilities to refire boilers to meet Clean Air Act emissions standards for the year 2000 and to improve efficiency at cost significantly lower than any alternative solution. The RC is an ultra low-NOx burner which also removes SOx in the combustion process. Refiring with the RC competes effectively in cost and performance in the combined $1 billion market for scrubbing equipment, low-NOx burners, and SCR systems. We are seeking a strategic partner to help manufacture and market the RC and related technologies. (NOX & SOX, FOSSIL)

Spinheat Ltd.
Michael Virr, President
1222 Bronson Rd.
Fairfield CT 06430
203-259-6101
203-255-4482
VIRRMJ@aol.com
———————
NDE Systems for monitoring age degradation and manufacturing quality
1//16 Very Interesting
As one example, inexpensive sensor could be left installed under piping insulation; connect instrument to take reading. Has EPRI $ for validation of real-time imaging in power plants. Information pkg available–looks solid.

This company’s patented technology provides breakthrough capabilities in quantitative nondestructive characterization. Portable systems integrate thin and conformable electromagnetic sensors, model-based GridStation TM software, and board-level instrumentation. Rapid scanning for clusters of microcracks, precrack fatigue damage monitoring and coating characterization are examples of the new capabilities offered by this proprietary technology. Fully integrated systems are being demonstrated at trade shows and sold to target customers for pilot-plant testing. Target markets for products and services exceed $300 million. This company seeks strategic alliances with market leading service providers, and an infusion of capital to finance manufacturing scale up and the expansion of field capacity, to meet current and expanding demand. (NUCLEAR, FOSSIL)

JENTEK Sensors
Neil J. Goldfine, President
Watertown MA 02172
617-926-8422
———————
Cost-effective electrochromic windows
1//24 Very Interesting
The only U.S. company to focus solely on this technology. First patent for ceramic thin film coatings. Use several coatings on glass. Pass DC current for 90% blockage of visible and 100% of IR and UV for sophisticated lighting and HVAC control.

This company has developed a patented ceramic thin-film electrochromic technology that gives users the ability to adjust the level of tinting of their glass from nearly clear to very dark. This gives the user the ability to effectively control glare and heat gain in windows. Sageglass delivers the durability, pleasing visual characteristics, low cost and customer benefits required for the architectural window markets. This company projects sales of $80 million in the year 2002. The company seeks a strategic partner in the glass window or energy management industry to scale up manufacturing for commercial product introduction. (END USE)

SAGE Electrochromics, Inc.
Mike Myser, Director Marketing and Sales
Piscataway NJ 088540-0278
908-699-1100
908-699-1101
———————
Landfill gas (LFG) to products, using carbon dioxide (CO2) wash technology
2//28 Very interesting
Land Fill Gas to Methane, and Liquid CO2, where some of the LCO2 is used to wash contaminants out of the gas. Looking for partners.

Company conceived, developed, patented, and demonstrated carbon dioxide (CO2) wash technology which converts landfill gas (LFG) to products including electricity, medium Btu gas, pipeline gas, liquid methane, liquid CO2, and methanol. Company was founded in 1989 for the advancement of innovative gas separation technology for high CO2 streams. There are 2,900 active landfills in the U.S. which could use this technology. Average investment is $7.5 million with payback under 3 years. Company offers the only technology which (1) derives the separating agent (CO2) from LFG, (2) is insensitive to changes in contaminant composition and concentration of LFG, (3) produces liquid CO2 from LFG, and (4) allows multiple end uses for LFG.

Acrion Technologies
Bill Brown, President
Cleveland OH
216-573-1197
———————
Highly graphitic carbon fiber reinforcement
2//29 INTERESTING
Vapor grown carbon fiber, low cost, simple continuous process. Very different from other fibers. High effective surface area. Injection moldable, smooth finish. Can be used in major quantities to reinforce tires, wood products, concrete(including ash-based?). Made from Hi Sulfur Coal, with methane as by product.

This company has developed a proprietary, highly graphitic carbon fiber reinforcement having a diameter of 0.2 microns, a length of 100 microns, and a low production cost. The unique combination of small size, high reinforcement value, and low cost enables broad use in EMI–shielding, friction products, batteries, engineered plastics and rubber for the automotive industry. A market demand of 120 million lbs./yr. for these specialized applications have been identified. The company is seeking an investor or joint venture partner from the automotive or energy industries to scale up for product introduction in mid 1988.

Applied Sciences, Inc.
Max L. Lake, President
Cedarville OH 45314
513-766-2020
———————
Advanced dry sorbent systems for air pollution control applications
2//30 Very interesting
Chemistry systems on vermiculite substrate for duct injection and easy recovery.
1. “Fluesorbent” SO2 control for retrofit in older small plants. (EPRI tested at Ohio Edison) Byproduct is a licensed agric. soil amendment.
2. “Mercsorbent” Air Toxic control, duct injected works at low temp., is recoverable. Will demo at Ft. Dix. Need Coal fired demo site.
3. “JetSorb” NOx control. First application at jet engine test cells.

This is a new kind of company: a supplier of multiple advanced sorbent systems for air pollution control applications. Each of the firm’s technologies are waste-free, retrofitable, and either low in total cost or low in capital cost – quite a contrast to existing market offerings. Specifically targeted markets are: 1) SO2 control for older, smaller plants, where scrubbers are uneconomic; 2) NOx control for stationary and mobile diesels; and 3) mercury air-toxic control. With six issued and four pending U.S. patents, the company is now scaling up and demonstrating its systems in the field. It is seeking funds and strategic alliances with large and mid-sized engineering or air pollution control firms to assist in marketing and product introduction programs. (NOX & SOX)

Sorbent Technologies Corp.
Sid Nelson, VP
Twinsburg OH
216-425-2354
———————
Supersonic air jet and vacuum transport for safe excavations using supersonic air jet
2//31 Very interesting
Did prototype with EPRI. Can be operated remotely (robotic). Safe, productive, precise, safe, efficient, flexible. Won’t harm any impermeable surface. Can even dig around tree roots.

Our Safe Excavation technology employs a proprietary, synergistic combination of supersonic jets of air and pneumatic vacuum transport to uncover any type of buried object without fear of accident or inadvertent damage. Industrial market applications involve urban and suburban excavations for new installation or repair of telecommunication. electric, or gas utility lines. Commercial needs range from agriculture to environmental remediation and recovery of hazardous or radioactive waste. Military usee include retrieval of unexploded ordnance or removal of buried land mines. We have designed, built, and tested hand-held, portable, and backhoe sized prototype equipment for each of these market segments. Market forecasts for our larger equipment are approximately two thousand units in a mature market annually. We desire an investor or commercial partner to help us begin to manufacture and sell into these market segments. (T&D)

Concept Engineering Group Inc.
Richard D. Nathenson, President
Pittsburgh PA
———————
Portable imaging nuclear survey meter
2//17 Interesting
Pre production units available for purchase. $75-100K each expensive but price is competitive and there is big savings in labor.

An established nuclear detector R&D and instrument manufacturing firm has developed an instrument that provides a picture of the distribution, intensity, and energy of gamma radiation sources. It is a self-contained system having two cameras, one for the nuclear image and one for the video. A black and white video image is produced with the nuclear image superimposed over it in color. The instrument addresses the $600 million nuclear radiation detection and monitoring market. The focus is on three major market segments that total $120 million: the nuclear industry, including nuclear power plants, nuclear material producers, and nonproliferation of nuclear weapons; the medical industry, including nuclear medicine and radiation oncology; radiation safety, including universities, industry, and hospitals. The firm is seeking a strategic alliance with a partner having an established marketing and distribution network. (NUCLEAR)

Radiation Monitoring Devices
Michael Squillante, VP Research
Watertown MA
617-926-1167
———————
Ground penetrating radar for underground imaging and site characterization

3//2 Interesting
Has significant utility contacts (see EPRI Journal 10/96 pg 38) Image processing needs to be faster. Digital wideband radar, airborne or truckmount, to 30 ft. depth, tie to GPS for 5 cm location accuracy. Plans for U/G Database Service.

A Silicon Valley high technology company has developed and demonstrated a patented Standoff Ground Penetrating Radar which can produce high resolution 3 dimensional images. A rapidly growing demand exists for underground site characterization and assessment for environmental, construction, utility, and defense customers for the location and classification of buried objects. The company projects sales in excess of $50 million per year by 2002 with an estimated growth of 15%-20% annually. Patented hardware, copyrighted software, and proprietary imaging algorithms insure significant market dominance. Equity investment is sought along with strategic alliances to accelerate product launch and early market penetration. (T&D)

Mirage Systems Inc.
Robert Ziernicki, President
Sunnyvale CA
408-752-1600
———————
Removal and recovery of mercury found in flue gases
3//10 Interesting
New subsidiary, Mercu-RE Inc., formed to pursue Mercury removal.

ADA is a engineering consulting service firm specializing in troubleshooting and analysis of emisssion control systems.
This company offers a process that takes mercury out of flue gases and recovers it as liquid elemental mercury suitable for commercial recycling and produces no secondary wastes. A regenerable sorbent (patent pending) is at the heart of the process. Available alternatives, such as activated carbon, are expensive and produce mercury-contaminated solid or liquid wastes. The parent company has over ten years of experience in air pollution control technology and offers units to DOE site clean-up efforts planned for Oak Ridge and other former weapon-making facilities. The firm is looking for a marketing, sales, and distribution partner with access to key markets, such as commercial and municipal waste incinerators. The ideal partner would also have knowledge of process engineering equipment. The technology would be a valuable asset to the portfolio of a partner with existing interests in air pollution control equipment and services. Sales over $10 million per year can be realized as a result of the hundreds of incinerators that are subject to mercury emission regulations, leading potentially to even larger markets in coal-fired power plants. (FOSSIL, ENVIRONMENT)

ADA Technologies
Daryl L. Roberts, Vice President
Englewood CO 80112
303-792-5615
———————
Integrated sensors for air quality and safety monitoring
3//15 Interesting
Low cost, mass-produceable planar thick film membrane, for application in indoor air quality. Stable over long time. Parent company Giner is specialty R&D company in electrochemistry and materials science–PEM, O2 generators, sensors, etc.

The company, a spin-off of an electrochemical and materials research firm, is targeting the annual $20 million U.S. indoor air quality and safety monitoring market. A unique patent-pending sensor design enables a manufacturing process for mass-production of high-quality, low-cost electro-chemical gas sensors. Manufacturing costs can be reduced to one-tenth of current costs. In addition, the new design will allow integration of sensors for simultaneous monitoring of combinations of gasses, such as CO, CO2, NO, NO2, and SO2, with sensitivities in the low-ppm range. Separate smoke detector and air quality monitor functions can now be combined into one new instrument to serve the target market. The company is seeking an investment for manufacturing set-up, and possibly a strategic alliance for distribution and marketing capability. (END USE)

Giner, Inc.
Anthony LaConti, President
14 Spring Street
Waltham MA 02154
617-899-7270
———————
Lumber utilizing a low-cost industrial by-product feedstock (incl. flyash)
3//26 Very interesting
Patented resin binder systems, can use multiple feedstocks including flyash. Fire resistant due to hi mineral content and closed cell structure. Process is exothermic. Product is moldable into shapes (e.g. moldings).

This innovative firm has developed a multi-patented cost competitive composite decking material. Ecodeck is non-warping, wood grained, moisture and insect resistant, and paintable. It can be cut and assembled with conventional tools and is produced with commercially available machinery. Ecodeck lumber utilizes a low cost industrial by-product feedstock and is cost competitive in the $580MM market for select grades of pressure treated southern yellow pine. The company is seeking strategic partners in the electrical utility and building materials industries and venture capital for remaining development and manufacturing scale up. (FOSSIL)

Ecomat, Inc.
John Mushovic, Exec. VP
Poughkeepsie NY
914-473-8777
———————
Thermoelectric modules for power generation and waste heat recovery

3//4 Interesting
Driving down mfg. cost of traditional 5-6% thermoelectric devices. Wide range of applications. Have prototype alternator replacement for diesel trucks.

Thermoelectric power generators for converting waste heat into electricity are available for U.S./overseas markets which range up to $1B. Cost-effective modules (one third competitors’ price) can be utilized for a broad spectrum of products: self-powered furnaces, engine alternator replacements, remote power and power generation for urban incinerators. Fourteen and twenty watt modules are in limited production. These modules can be used individually or in multikilowatt generators. A two Watt generator is planned that can outperform chemical batteries. We are seeking strategic partners and venture capital for scale up of manufacturing and rapid market penetration. (DU)

Hi-Z Technology, Inc.
Norbert Elsner, President
San Diego CA
619-695-6660
———————
Microprocessor technologies for the purpose of power monitoring
3//18 Interesting
Unique current sensor replaces conventional CTs. One fourth the size. No need to disconnect wire to install it. They have not explored any possible T&D grid applications.

This privately held company has developed products which combine unique and patented current sensors with custom developed VLSI and microprocessor technologies for the purpose of power monitoring. The products are based on more than 10 years of R& D, production and direct marketing experience. These technologies will provide a company with a competitive lead by reducing size, cost and installation time 50+%. Additional high-margin products, in design, will effectively and efficiently instrument commercial buildings, industrial processes and homes.. Of the overall USA Electrical Measuring Instrument Market (SIC 3825, $8+ Billion), the company is focused on market niches that total $130 million. These markets include Energy Service Company applications, commercial tenant submetering, industrial equipment monitoring and control and Utility Demand Side Management, Load Research, Time Of Day metering and Customer Service applications. The company seeks partners who bring established distribution channels and capital for production and marketing. (END USE)

Energy Teller, Inc.
Tim Michels, President
2718 Sutton Blvd
St. Louis, MO 63143
314-644-2629
314-644-0691
———————
Hazardous and radioactive waste treatment
3//23 Interesting —
“DeTox” wet oxidation to destroy organic compouns at low temperature. Difficult to judge — one of many contenders in this field.

With eleven years of operating history, patents issued in the U.S. and seven major industrial countries, and a full-scale demonstration project funded by the Department of Energy, this innovative and dynamic corporation has established its wet chemical oxidation technology at the forefront of hazardous and radioactive waste treatment options for government and industrial markets. The total U.S. environmental market is $165.5 billion. Our company is focusing on the market segments of hazardous waste management, remediation and industrial services, and process and prevention technology development which together comprise a $4.2 billion market. Established and potential customers find the advantages of transportability for on-site treatment, alternative permitting options, safe (low temperature and low pressure) operating conditions, broad ranged applications, and benign secondary wastes to be significant improvements over incineration and other alternative waste treatment technologies. Partnership with a leading environmental management firm is sought for $1 million equity participation, $3 million project financing for an existing customer, and marketing and sales assistance in implementing the commercialization plan involving the sale of plants and services. (ENVIRONMENT)

Delphi Research, Inc.
Terry W. Rogers, President
Albuquerque, NM
505-243-3111
———————
Breakthrough material to remove radionuclides, metals, and organics from contaminated waters
3//39 Interesting
Humasorb, made from coal, simultaneously captures both metals and organics. Can be used as a liquid or solid filter. Could handle coal pile run off. Co. a spinoff from Atlantic Research Corp in 1987.

A unique material has been developed for the single-step removal of radionuclides, metals, and organics from contaminated waters. This versatile new material replaces traditional sequential processing approaches making it cost-effective as a permeable barrier to remove and capture plume contaminants and for surface treatment operations. Applications are targeted at the water pollution prevention and remediation markets estimated to exceed $600 million per year. Technology to produce the new material is protected by pending patents and trade secrets gained over a 5-year period of development by a company that has a successful record of commercializing new technologies. Investors and strategic alliances are sought to support the commercialization of the material on a site-specific or application basis. (NUCLEAR, FOSSIL, ENVIRONMENT)

ARCTECH, Inc.
Harry R. Johnson, Technical Director
Chantilly VA 20151
703-222-0280
———————
Large-scale advanced vitrification technologies for site remediation and waste treatment
3//40
Subsidiary of Battelle is commercializing this DOE technology. Tested and licensed. Clear focus on markets, and good grasp of who competitors are.

This international Company holds an exclusive worldwide IP position in the field of large-scale advanced vitrification technologies for site remediation and waste treatment. The Company has over $20 million in current backlog, is profitable, has worldwide growth opportunities, and it’s proven technologies possess excellent regulatory and public acceptance. The Company plans to acquire more than $50 million of sales from the DOE environmental restoration marketplace within the next three years. The Company seeks a strategic partner, that is established or entering the DOE ER/WM marketplace, to augment its operations and marketing capabilities as needed to secure large ($20 to 100 million) waste remediation and treatment projects within the DOE, other government, and private remediation markets. Benefits to the partner include increased market potential, a strong vitrification technology base, and strategic access to the Company’s parent, which is a leading environmental technology company. The Company poses an attractive opportunity for $8 million of second stage equity investment followed by an IPO for support of further growth. (NUCLEAR, ENVIRONMENT)

Geosafe Corp
James E Hanson, Vice President
Richland WA
509-375-0710
———————
Solid-Gas sorption refrigeration, consumer products
5//19 (Not presented — “Already found financing or strategic arrangments”)

The company is a thermal product development firm with an excellent reputation in the commercial HVAC&R industry. It is seeking an equity investment to launch the OEM manufacture of small packaged refrigeration and heat battery modules for already existing and future appliance manufacturing customers. The technology is based on a sorption process which provides refrigeration without moving parts and yields unmatched rechargeable thermal battery energy densities. The market applications include consumer products, medical and automotive appliances. The initial focus is on small refrigerators/freezers and an automotive application with existing customers. Anticipated fourth year OEM sales volume is $25,000,000. (END USE)

Rocky Research
Dr. Uwe Rockenfeller
1598 Foothill Dr.
Boulder City NV 89006
702-293-0851
702-293-0854
———————
Continuous removal of coatings for aircraft, bridge & environmental applications
5//20 Interesting.
Unique capability to remove paints and coatings with one step process, quickly and less expensively. Can even remove one layer at a time!

Very broad applicability. Company focusing on airplane depainting, so opportunity to pick up on other fields of use.
A small business that develops commercial applications of laser-based systems is seeking an equity investment to commercialize their proven technology for removal of coatings from various kinds of surfaces for multiple applications in the commercial marketplace. This technology uses lasers and robotics to provide the most efficient, environmentally-sensitive and cost-effective process for removing paint from aircraft, bridges, and radioactively-contaminated facilities. The annual target market for these applications is $4.5 billion. By year 4, the projected sales for these applications are estimated to be $70 million.

F2 Associates, Inc.
Joyce Freiwald, President
14800 Central SE
Albequrque, NM 87123
505-271-0260
———————
A system for recycling acids used for metal surface preparation
5//27
Interesting (?) Hard to judge

The Pickliq process is a patented system for recycling acids used for surface preparation in the metals processing industries. The process produces salable solid metal salts as by-products. The company employs highly experienced people that have an investment stake. The people work with Engineering and Construction firms and their clients to implement the process. The firm qualifies and supervises sub-contractors who construct the skid mounted units of the system. Data to date indicate a $15 – 20 million/yr market for the system after year four is possible. Further process development is funded by the US DOE through an ERIP grant. The company is obtaining working capital from small investors. It is looking for alliances with Engineering and Construction firms with clients in the steel and wire industry to exploit domestic and international markets. (ENVIRONMENT)

Green Technology Group
Douglas Olsen
Pawling NY
914-855-5488
———————
Position sensors in and around underground storage tanks, buried pipelines and below buildings.
5//36 Interesting

The Steerable Vibratory System (SVS) is the only way to accurately position sensors in and around underground storage tanks, buried pipelines and below buildings. The SVS is made up of a lightweight rig, a steerable tip, the patented navigational system and penetrometer rods with unique joints. It is not affected by magnetic anomolies and will not bring contaminated cuttings to the surface or contaminate other layers. The more accurate delineation of plumes will save money in clean-up. The firm has worked closely with customers in the underground industry for over 15 years. Our market includes Superfund sites and underground storage tanks (>295,000). The company will manufacture the SVS and seeks licensees with established distribution networks for marketing and sales. (ENVIRONMENT)

UTD Incorporated
Barney Harris, Vice President
Newington VA 22122
412-429-9496
———————
Treatment of radioactive, hazardous and mixed waste
5//14 (Not presented — “Already found financing or strategic arrangments”)

This environmental technology company has developed and commercialized its patented steam reforming technology in the paper industry. The company is now expanding by applying its unique non-incineration technology to the treatment, volume reduction, and disposal of radioactive, hazardous and mixed radioactive/hazardous wastes. Tests are underway in a1 ton per day facility demonstrating the destruction of hazardous compounds (greater than 99.99%) and the isolation of radionuclides in an environmentally superior final waste form. This is opening the door to the burgeoning DOE market, commercial ion exchange resin market, and industrial hazardous waste market. The company is seeking a joint venture arrangement with a strategic ally/investor to commercialize the technology in these new applications. The combined potential market exceeds $350 million per year. (NUCLEAR, ENVIRONMENT)

ThermoChem, Inc.
Gary Voelker, COO
10220-H Columbia Rd
Columbia MD 21046
410-720-6100
410-312-6303
———————
Multimedia training in technical subjects
5//21
Company combines expertise in both instructional material preparation and technology. Not particularly different from other suppliers.

This company creates multimedia training packages in scientific and engineering disciplines for use within the DOE complex, by accelerator manufacturers, and in higher education. Its unique combination of scientific expertise, software skills, and the needs of the DOE complex makes it the vendor of choice for training for environmental cleanup and production of special materials, such as tritium. Multimedia training rapidly raises the level of competency and quality of technicians and engineers, leading to a more effective work force. For example, a tutorial in development on accelerator physics can serve as a basis for specialized training programs in companies manufacturing accelerators for industrial and medical applications. Opportunities for a publisher include marketing as a standalone software piece, bundling with a textbook, and teaming to develop new educational tools.

WhistleSoft, Inc
Richard R. Silbar, President
Los Alamos NM
505-662-7309
silbar@whistlesoft.com
———————
Electrical energy storage/ hydrogen production
5//35 Interesting, but doubtful
This uses a solar heated furnace to drive water+ Br –> HBr reaction, and electrochemical cell using the reversible H + Br <–> HBr reaction to store and release electrical energy. Provides on peak electicity and H2 for sale. Have strong DOE support.

From 03-14-96 The Financial Times:
“Solar Reactor Technologies has entered into a $2.5m (#1.6m) co- operative agreement with the US Department of Energy for its system for producing renewable hydrogen and combined electrical storage. Hydrogen is generated by means of solar energy concentrated onto bromine and water which forms hydrogen bromide and oxygen. The former is then split at night using low cost off-peak electricity in an electrochemical cell to produce hydrogen, and regenerate the bromine. The end result is that water is split into hydrogen and oxygen, but using one third of the electricity required for conventional water electrolysis.

By storing extra hydrogen and bromine and recombining these in the cell, electricity is generated. This in effect permits the storage of off-peak power for use at any time. The system is potentially very attractive to large electrical consumers. However, the economic generation of hydrogen would also be very significant for vehicle companies looking to the longer- term future. BMW has been experimenting with hydrogen fuelled vehicles since the late 1970s while Mercedes is one of a number of companies which is taking the development of hydrogen fuel cell vehicles very seriously.”

This company is focused on the development and commercialization of renewable energy technologies. One of these is a patented solar-electrochemical system which links utility scale electrical energy storage with the production of hydrogen and oxygen from water. The system will provide peak electrical power and hydrogen with no greenhouse emissions. The process is competitive with existing combustion technologies. Sales potential for the electrical energy storage market in the U.S. is estimated at $100 -$200 million per year. To fund its commercialization program, the company is seeking a relationship with an investor and/or strategic partner. (DU)

Solar Reactor Technologies, Inc.
Harley L. Heaton, Vice President
3250 Mary Street, #407
Miami FL 33133
305-442-9966
———————
Remote power generation, residential cogeneration and cryogenic cooling products
5//42 (Not presented — “Already found financing or strategic arrangments”)

Two distinct lines of products, using the same basic technology, have been developed by this eleven year old company. The RG-350TM uses heat from any source to produce electricity for the remote power market (estimated at $30 million annually) while the RG-1000TM will use propane/natural gas to create combined heat and power for the residential cogeneration market (independently assessed to exceed $1 billion annually in ten years). Additional advantages derived from these products include higher fuel efficiency and reliability with lower maintenance, noise, and emissions than any existing products. The company is also manufacturing its BeCOOLTM cryocoolers for use in the computer, superconductivity and sensor cooling markets. Teaming partners are being sought for marketing, distribution and new product development while investor funding will be used for pre-production and manufacturing activities. (DU)

Stirling Technology Co.
Mr. Jeffrey Lubeck, Controller
4208 W Clearwater Ave
Kennewick WA 99336-2626
509-735-4700
509-736-3660
———————
Low-cost fiber optic chemical sensors–Smart Cable ™ detects leaks along long distance pipelines
6//13 (did not consider)

This company is dedicated to developing and licensing low-cost fiber optic chemical sensors for environmental monitoring and medical diagnostics.The first generation, developed for the detection and discrimination of water and hydrocarbons, is elegant in its simplicity and has been field tested by an independent third party. The corporation has already produced sales of related environmental products. These revolutionary, patented sensors provide continuous monitoring for environmental contamination at very competitive costs. Installed in fuel tanks, pipelines, and landfills, sensor networks provide realtime indications of contaminants and leaks over large and remote geographic areas. Additionally, sensors are being adapted for use in hospitals and medical laboratories to detect the presence of specific biochemicals in bodily fluids. This corporation seeks licensees with strong presence in environmental remediation and potential licensees which will fund continued development of the sensor family in exchange for exclusive licensing rights. (ENVIRONMENT, T&D)

Noverflo, Inc.
Dr. Joe Hopenfeld
Rockville MD
301-340-1625
———————
Wireless identification (RFID) tagging for asset management
6//37 Interesting
May have applications in asset tracking, remote metering.

The company has developed an exciting wireless technology, called RFID, derived from R&D grants by the Department of Energy. This technology has enormous commercial potential for applications such as asset management and transportation operations. The company chairs the ANSI technical sub-committee for RFID standards. Multiple patent and trademark applications have been filed. The product currently is in beta testing at DOE’s Savannah River site and is ready for use in all DOE sites. A trucking demonstration system is on display at Andersen Consulting’s transportation center in Atlanta. The management team, with over 35 years of RF, business, and finance experience, is poised to aggressively penetrate the current $250,000,000 market for RFID equipment, growing at an annual rate of 25%. The company is forming alliances with major corporations to accelerate growth and is seeking equity investment of $1,000,000 to support that growth. Various exit strategies will be entertained for equity investors including acquisition or IPO.

RANDTEC, Inc.
Alan C. Hurkamp, Chariman
Fairfax VA 22030
703-352-0833
———————
Thermophotovoltaic (TPV) generation of electricity from flame heat
6//41 Interesting
TPV device with their own patented emitter and cells. Original technology licensed from Boeing. Claim ing advantage over competitors. “Mini-cogen” – devices at 2, 50, and 150 watt elec –“wall heater” Their approach to the market is arguable.

Using its infrared-sensitive photovoltaic cells coupled with a fuel-fired emitter, this company fabricates Midnight Sun® cogenerators of electricity and heat. These cost-effective units feature quiet, reliable, efficient, and clean operation. With a strong patent position, military contracts, and an operating cell manufacturing facility, the company is positioned to capture a large share of the emerging market for remote and mobile cogeneration. Homes off the electric grid are targeted first, with a five year plan to take the company public and enter the much broader on-grid residential market. Investors are sought to rapidly scale up manufacturing capabilities; of particular interest are utilities pursuing growth in unregulated operations and furnace manufacturers considering self-powered heating systems. (DU)

JX Crystals, Inc.
Dr. Lewis M. Fraas, President
Issaquah, WA 98027
206-392-5237
———————
Metal coated fine powders
7//5
POWDERMET is a new spinoff that will be doing this work. ULTRAMET is the established company.

Ni and Co coatings on nanograin tungsten carbide, using “fast fluid bed chemical vapor deposition”
The company is a commercial spin-off of an established medical and aerospace materials firm. We are seeking an equity partner to launch the large scale manufacture and marketing of metal coated powders for the ordinance, tool, and die markets. Metal coated sub micron powders represent a revolutionary advancement in powder metallurgy, enabling a 30-50% increase in cemented carbide and tungsten alloy performance at equal or lower cost to current products. This investment partnership opportunity will leverage over $1 million in signed, development contracts to achieve projected revenues of $20 million in a $120M market within 5 years. This breakthrough patent pending technology is currently operational in the pilot plant stage. All proprietary rights, developmental, and pilot plant equipment has been negotiated for assignment to the company.

ULTRAMET
Andrew Sherman, Marketing Mgr.
12173 Montague St
Pacoima CA 91331
818-899-0236
818-890-1946
———————
Fiber optic sensing
8//7 (did not consider)

This company has developed and demonstrated proprietary technologies encompassing components and system building blocks enabling production of low cost interferometric fiber optic sensors. The technology is applicable to inertial, intrusion, vibration, acceleration, acoustic, strain and electro-magnetic sensing in formats of single element, multi-channel distributed, and remote configurations. The company seeks an equity investment from a partner to spin off a business for the purpose of producing components and instruments based on the proprietary technologies and marketing them to sensor manufacturers in their respective fields. Expected sales for these ground breaking products will exceed $10 million per year by year 5.

Optiphase, Inc.
Jeff Bush, President
Van Nuys CA
818-782-0997
———————
Direct Load Control switches for plug connected appliances
8//25
Plug connected “smart” switch, remote controlled via one-way radio. Device stores data on operating history. (Hopelessly naive and out of date DSM device)

Manufacturers of electric utility load management controls will find this exclusive licensing opportunity of unique value. The Company has patented and field tested a microprocessor-based electric Direct Load Control (DLC) switch for plug connected appliances. The switch is designed to improve residential DLC program effectiveness; and economically collect comprehensive market intelligence on end-use appliance operation. The Company is looking to form a strategic alliance with a manufacturer interested in increased market share through the development of a “family” of DLC and home automation related products which complement the licensee’s current product line. The licensee’s product development costs would be reduced through follow-on licensing agreements with the Company.

Automated Energy Management Systems
Frank Rudden
E. Northport NY
212-460-6511
———————
Open-path atmospheric pollution monitor, detection of hazardous air pollutants
8//33 (did not consider)

The open-path atmospheric pollution monitor being developed for DOE integrates a CO2 laser and an acousto-optic tunable filter into a single instrument which measures pollutant concentrations in the optical path to any topological object. The range is over 4 times longer than existing monitors, thereby eliminating the need for multiple monitors and reducing costs. The estimated environmental and process control market is over $100 million within 5 years with the potential for ~$400M for military applications. A large defense contractor seeks to license a company to commercialize this monitor. The licensee will have exclusive use of the basic patent and unlimited access to the filter for which the contractor is the only supplier in the world. (ENVIRONMENT)

Northrop Grumman STC
Dr. Lyle H. Taylor, Fellow Scientist
Pittsburgh, PA
412-256-1650
———————
Pyridines from kerogen oil
9//34 (did not consider)

Kerogen oil, derived from Western Green River oil shale, is rich in pyridines (~20% of the raw oil). These pyridines can be produced and refined at costs substantially lower than current manufacturing costs for synthesis routes. A strategic partner and project financing are sought to develop a Kerogen Products Extraction (KPX) venture which will annually produce 25,000 tons of pyridine products and 300,000 tons of petroleum products. Annual revenues are projected at $150 million yielding more than 30% internal rate of return on an investment of $75 million. Pre commercial milestones will be achieved through an existing DOE contract and phased project financing. Product development opportunities in higher alkyl pyridines, pyrroles, indoles, phenols and quinolines offer additional long-term growth potential.

James W Bunger & Assoc. Inc.
West Valley City, UT 84119
801-975-1456
———————
Electromagnetic Sensors For Chemical Analysis
9//38 (did not consider)

A well established research laboratory is forming a subsidiary company to manufacture and market proprietary sensors for continuous chemical analysis. This innovative technology utilizes eddy current properties in an advanced electromagnetic sensor to identify chemical constituents. Advantages of this patented approach include exceptional resistance to fouling, low system cost, high sensitivity, compatibility with digital integrated circuitry, and high selectivity. The newly formed company will acquire all of the intellectual property and over 14 years of related experience. Equity or strategic partners are sought to participate in launching the new product line. Potential instrumentation markets for the sensor include process control, environmental monitoring, and biotechnology. The measurement of wastewater pH alone is anticipated to be a $100 million market by the year 2000 and should conservatively generate $10 million dollars revenue.

American Research Corp of Virginia
Howard J. Moses, Director, Business Development
Radford VA 24143-3406
540-731-9655
———————
A compact, high-yield, HGA synchrotron X-ray lithography source
10//1 (did not consider)

The mission of this company is to become a leading supplier of high-intensity synchrotron x-ray source machines for lithography of Giga-bit class memory chips with resolution at or below 0.18 micron to meet the emerging global demand. The product makes use of a compact electron injector based on a high–gradient accelerator (HGA) combined with a superconducting synchrotron radiation ring, resulting in increased resolution, lower capital cost, lower production cost per chip, and lower cost of ownership. The company seeks $10 million from joint venture partners and investors for the completion of the first machine to be sold in 1999.

DULY Research
Rancho Palo Verdes CA
301-548-7123
———————
Portable fiber optic phase fluorometer
10//6 (did not consider)

This company, a leader in cutting-edge optics, optoelectronics and monitoring instrumentation technologies, has developed the only portable fiber optic phase fluorometer (FOPhase) instrument available in the market. This patent protected technology addresses the environmental safety ($50 million), process control ($100 million), R&D ($50 million), and medical markets ($200 million), for fluorescence detection monitoring. Owing to the high market demand for a low cost fluorescence lifetime spectrometer in various market segments, the company is searching for a strategic partner to market and distribute the FOPhase Technology. The sales forecast for 2000 is $26 million or 6.5% of the total market.

Physics Optics Corp
Torrance CA 90501
310-320-3088
———————
Interdisciplinary science education software
10//8 (did not consider)

Our firm will become the premier source of interdisciplinary science education software. We seek a partnership with a forward looking company in the communication, hardware or software industry that wishes to raise the level of scientific preparedness of the next generation of students and increase the use of computer and communication technology. Our partner will manage the distribution of our product line to expedite market penetration of our first product ready for introduction in January 1997. Over the next two years we will introduce a series of products utilizing CD-ROM and Internet data sets. Titles include: El Niño, Ozone and Monsoon, and are designed to teach Science from grade 6 to college level. Our series is a set of virtual research expeditions in which students use satellite observations of the Earth and data from climate models to study the Earth as a system of interacting components. It brings science alive.

Plant Earth Science
Dr Catherine Gautier-Downes
Santa Barbara CA
805-730-1622
———————
Interactive display software for hospitality industry
10//9 (did not consider)

This Company is developing interactive display software that provides electronic guest services for the national and international hospitality industry. These proprietary technologies allow hotels to integrate this software into their front desk operations, reducing overhead, increasing productivity, and enhancing guest services. Notable electronic services include express check-in/out, account transactions, services and events locators, interactive maps, and business services. The total available market for this kiosk technology is $2.8 billion. The high-end hotel market, the primary focus of this business plan, is $1.2 billion. This Company is seeking equity financing and a strategic partner for development, manufacturing and distribution.

Scientific Digital Visions, Inc.
San Jose CA
408-289-8494
———————
De-contaminating concrete; in-situ cleanup of soil
10//12 (did not consider)

This company is forming a spin-off to commercialize novel patented electrokinetic technologies developed under DOE funding. We plan to license to major site management contractors who are involved in remediation of DOE sites. This will be a good opportunity for entry into a sizable industrial market as well. This technology provides the only available approach to an in-situ cleanup of soil contaminated with heavy metals. It also provides a cost-effective technique for decontaminating concrete. The industrial opportunity is extensive in that it applies to the many entities which must deal with aqueous waste streams. The company is receptive to developing a creative package that recognizes investor’s risk and provides for exit when performance objectives are met. (ENVIRONMENT)

ISOTRON Corp.
New Orleans LA
504-254-4624
———————
Computer mapping software for petroleum industry
10//22 (did not consider)

The company develops advanced technologies to assist the petroleum industry with exploration and production (E&P) problems. Their product, Gviz, is state-of-the-art computer mapping software, coded in C++, that interpolates spatial data to estimate interwell reservoir properties. E&P professionals purchase $48 million annually in mapping software. This company maintains proprietary expertise, keeping them ahead of the market with improvements to their software. They plan a series of releases leading to an integrated reservoir management package in five years. The company seeks an alliance with an oilfield E&P software vendor who can bring financial resources, marketing, and distributing expertise to our commercialization effort. In return the strategic ally will receive exclusive right to the product.

Correlations Co.
William Weiss, President
Socorro NM
505-838-1910
———————
Advanced quantum chemistry software package
10//32 (did not consider)

This company has developed an advanced quantum chemistry software package allowing industrial, government and academic researchers in the chemical, biochemical, pharmaceutical and materials sciences, among others, to address far larger molecular structures and complete calculations faster on smaller molecular structures than is currently possible. This innovative package will afford users significantly reduced run times and lower processing and manpower costs. The market size for sophisticated molecular modeling software is estimated at $58 million with the quantum chemistry software niche occupying $8 million and an annual market growth rate of 8%. The company seeks an equity investment for commercialization, marketing and sales operations.

Q-Chem, Inc.
Benny Johnson, President
Pittsburgh PA 15218
412-828-7106
———————

Tech Nuggets – Energy Storage Association

Subject: UFTO Tech Nuggets 8/13/96
Date: Tue, 13 Aug 1996 16:14:08 -0700
From: Ed Beardsworth <edbeards@batnet.com>

UFTO TECH NUGGET

ENERGY STORAGE ASSOCIATION

The Utility Battery Group has now been renamed as the Energy Storage Association (ESA). The name change reflects a broader view to encompass flywheels, smes, and other energy storage technology. This year’s chairman is Chuck Ward of Oglethorpe Power.

The next meeting is scheduled at Amelia Island (30 miles from Jacksonville, Florida) for November 11-13, coinciding with an EPRI/Oglethorpe meeting on power quality. The technical agenda will focus on power electronics, and include a tour of th PQ2000 Battery Storage Project in Homerville GA.

You should very seriously consider joining ESA if you haven’t already, as a very effective way to keep informed and in the loop of developments in the rapidly emerging field, especially as it relates to UPS, power quality, and the prospect of real customer side storage. Currently, it is $1000 for a company membership, which also covers meeting registration fees.

The Executive Director is Jon Hurwitch, of Switch Technologies, Bethesda MD, 301-951-3231, fax 301-951-3235.

CREAM2 Test Case Free to EPRI Members

For members of the the SSOS business unit of EPRI (to be renamed GOP — Sorry, I have no idea what these initials mean) — Power Systems Research is doing the new version of EPRI’s CREAM model (renamed EPRI-PWR), and needs member utility volunteers for a free test run on your system or part of it. CREAM evaluates supply reliability of a power system, taking into account both generation and transmission outages, providing a consistent framework for analyzing transmission access and wheeling issues, establishing marginal cost prices at bus level, and analyzing tradeoffs between generation and transmission reinforcements.

Contact: Ali Vojdani, EPRI, 415-855-2838, or Mike McCoy, PSRI, Portland OR, 503-223-1720.

————————————————————–
| *** UFTO *** Edward Beardsworth * Consultant |
| 951 Lincoln Ave. tel 415-328-5670 |
| Palo Alto CA 94301-3041 fax 415-328-5675 |
————————————————————–

Technology Transfer Opportunities – Sandia

UFTO

PROPRIETARY

Final Report

Technology Transfer Opportunities in the National Laboratories

Sandia National Laboratories

Albuquerque, New Mexico

& Livermore, CA

July 1995

Prepared for:

Utility Federal Technology Opportunities (UFTO)

By:

Edward Beardsworth

Consultant

 

This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities

 

Contents:

 

1. Summary
1. Sandia Organization
2. Sandia Technologies & Programs
11. Sandia Contacts

 

This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.

 

Summary

This report details findings about technology and technology transfer opportunities at the Sandia National Laboratories (Sandia) that might be of strategic interest to electric utilities. It is based on visits to Sandia in March 1995, as part of the UFTO multiclient project.

Background

Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, the UFTO program has been established as a multi-client study of the opportunities thus afforded electric utilities.

Sandia Organization

Sandia began in 1945 as a small part of Los Alamos Laboratory, and in 1949 became a separate laboratory managed by AT&T. (The University of California, which manages Los Alamos, did not want to become involved in the actual manufacture of weapons.) Due to AT&T’s culture and management approach, Sandia grew up with an organizational style similar to Bell Labs, and quite different from the other national labs. There is a line management structure, and from the beginning, a strong “industrial R&D” approach that emphasizes practical results and getting them into use.

AT&T has managed Sandia (as a public service, for $1 per year) from 1949 until 1993, when Martin Marietta won the bid to take over. Martin (now Lockheed Martin) has a subsidiary company called Sandia Corporation that manages the laboratory (similar to the arrangement at ORNL and INEL).

Sandia is located on Kirtland Air Force Base in Albuquerque, and at Livermore California (across the street from L. Livermore National Lab). Total staff number about 8500 people, with about 1000 in California. About 60% of the staff are in technical and scientific positions.

Managers of “directorates” or “centers” have a fair degree of autonomy, and report up to a “sector” vice president level which in turn report to Al Narath, the president and lab director.

The sectors include:

Defense Programs (the largest), which does engineering and design for weapons systems,

Energy & Environment, led by Dan Hartley, deals with all other areas of the Dept. of Energy, with programs in Applied Energy, Nuclear Waste Management, Environment, Nuclear Energy, and Energy Research.

Work for Others (other government agencies) also known as Systems Applications and Research & Exploratory Technology

Sandia has specific major cross-cutting initiatives in agile manufacturing, electronics, and advanced information processing.

A general point of information: each lab annually publishes an “Institutional Plan”, which is organized according to which DOE Program Office supports the work, not the lab’s own organizational structure. Thus a “mapping” between the two structures is required to be able to see the work of the groups within a lab.

Sandia Technologies & Programs

 

Covered in this section:

  • Combustion Research
  • Advanced Batteries and SupercapacitorsUtility Batteries/Storage/UBG
  • Renewables
  • Fuel Cells
  • Robotics
  • High Consequence Operations
  • High Performance Computing
  • Distributed Information Technologies (NII)
  • Sensors
  • Materials
  • Reliability/Decision Making
  • Micro SMES
  • HyMelt
  • High power switching

General Telephone # is (501) 844-5678
In Livermore, CA (510) 294-3000

Programs of greatest direct applicability to utilities are in the:
Applied Energy Program Dan E. Arvizu, Director 505-845-8336

 

Three major program areas:

1. Renewable Energy: solar thermal, PV, wind, geothermal, biomass

2. Energy Efficiency: utility energy management, materials & manufacturing processes, combustion technologies, transportation batteries, superconductivity

3. Fossil Energy: coal combustion, oil & gas production, strategic petroleum reserve
Industry collaborations involve many electric utility companies and manufacturers.

• Combustion Research Don Hardesty, Manager, Combustion Research 510-294-2321

Charles M. Hartwig 510-294-3047

Over 1000 Sandia employees are located in facilities in Livermore California, and operate several special facilities, one of which is the Combustion Research Facility, the only one of its kind in DOE. Can handle industrial scale burners to 3 million BTU/hour. It is a “user facility” and outside visitors and users are encouraged. Partnerships with industry include GM, Cummins and Beckman Instruments and many others. Developed a number of specialized flame/combustion observational, measurement and diagnostic techniques. Provided fuel blending strategies to midwest utilities to meet SOx requirements.

The Burner Engineering Research Laboratory is a user facility for industrial burner manufacturers, is booked for a year in advance. Wide range of studies include air toxics modeling

NOx program addresses measurement and prediction of NO formation in turbulent flames.

Sensors for steel industry for in situ measurement of CO and CO2 in furnaces.

Combustion properties of biomass derived fuels and char.

Laser and remote atmospheric sensing (invented Lidar).

The Engine Combustion Technology Program involves all the major car and engine makers, universities and other labs.

In Hydrogen, work in progress on combustion, engines, storage, and hydrides.

Publications: CRF News published bimonthly. Contact William J. MacLean, 510-294-2687

 

• Advanced Batteries and Supercapacitors

Electrochemical R&D for DOE is longstanding and diverse, meeting many needs for high quality and reliable systems for weapons programs, and working at the forefront in many nonweapons areas of technology. Lawrence Berkeley Lab is well known for fundamental research, and Sandia for devices, having supplied all the power supplies for nuclear weapons systems since the 1950s.

Until a reorganization on July 1, Sandia’s work in battery technology was part of a larger activity called the “Electronic Components Center”, which includes microelectronics, modules, optoelectronics, components and reliability. Full fabrication capability. [This Center could be a valuable resource for a utility’s customers in these industries. Ray Bair, Director, 505-844-1912.]

Battery programs now reside in the “Energy Components Center” (Joan Woodard, Director 505-845-9917) along with work in explosives and neutron generators, though personnel will continue their close coordination with the Electronics Center.

There are four battery development groups at Sandia, each with a different emphasis, but closely interrelated. The department heads form a coordinating team.

Dan Doughty Battery Programs 505-845-8105

Ken Grothaus Battery Research 505-844-1654

Dennis Mitchell Battery Development 505-844-8656

Paul Butler Testing Program 505-844-7874

(Full range of performance, abuse, failure, and qualification testing. Extensive facilities.)

 

– Work in Zinc/Silver Oxide, Sodium Sulfur, Zinc Air, Zinc Bromine, Advanced Lead Acid, Nickel Hydrogen, Nickel Cadmium, Lithium/Sulfur Dioxide, Supercapacitors

– USABC CRADA, with automakers, lithium rechargeable battery development and testing

– Implantable long life battery development for medical application

– Battery Technology Initiative — funds-in CRADA with 4 companies for consumer batteries

– Ultracapacitor — thin film to get 1000 F in a D cell.

– Reserve Batteries — primary energy sources; one-shot devices activated by external means. For weapons systems; not likely to have commercial application.

 

• Utility Battery Storage Program Paul Butler, 505-844-7874 Abbas Akhil, 505-844-3353

Battery technology development (Pb-acid with GNB, Sodium sulfur with Silent Power, etc.), modular systems (AC Battery/Delco), systems studies (SDG&E, Chugach, Oglethorpe, BPA), feasibility studies (SMUD, Chugach), test & demos (PG&E, Metlakatla Alaska, PREPA) subsystems engineering, integration, industry outreach.

Strictly electric power industry oriented. About half of budget goes to industry in heavily cost shared projects. Sandia sees utility applications as being very nearly ready for take off. (Phase 2 of “Opportunities” project just getting underway–needs industry participation! Phase 1 report available from Paul Butler.) Broad view of potential emphasizes T&D benefits, DSM and UPS/Power Quality applications, which don’t require very large scale demos. Problems with large scale installations leading to new approach to do smaller units that are flexible or transportable. More of a T&D asset like a transformer. Puerto Rico’s experience with 20 MW unit has them convinced to meet their estimated need of 100 MW with turnkey units.

 

Provide support to the Utility Battery Group (UBG)

[An excellent and very cost effective way for utilities to stay abreast of developments; controlled by its utility members Many UFTO members already active. Contact Rick Winters, UBG chairman (PG&E/Endicon) 510-867-0904, or Paula Taylor, Energetics, 410-290-0370.]

• Renewables Paul Klimas, Manager, Renewable Energy Office, 505-844-8159

Sandia’s goal is to develop commercially viable energy technologies based on solar, wind and geothermal resources so they beocme significant domestic and international supplies. They have a long-term focus on the utility sector, expecting remote markets to play a key role in supporting the industry.

Photovoltaics Marjorie Tatro 505-844-3154

Activities in all aspects, from cell development to system applications. Work closely with industry on technology development for crystalline silicon cells and modules and other systems components (e.g. inverters, battery charge controllers and controls), and with the systems integration industry and users through the PV Design Assistance Center. The Center did a thorough evaluation of existing installations and identified new opportunities for the National Park Service. They have an extensive publications list (including some on utility interconnection issues), and provide support to project developers here and abroad.

In the past, Sandia had a number of partnerships under an initiative on concentrators, but chose not to support this work when funding levels were reduced in 1993. The only concentrator effort funded through FY94 was the low concentration line focus concept advanced by SEA Corp.

In one-sun cell development, Sandia emphasizes crystalline silicon, working on cell designs and processes. (NREL tends to be more involved in advanced materials and thin film.) Sandia believes their broad resources in manufacturing are valuable, bringing optimized high temperature processes, surface treatments and reduced waste streams to the manufacturers of cells.
Solar Thermal Craig Tyner 505-844-3340

Manage the conversion of Solar One (still operational!) to Solar Two. IR 100 awards for Solar Detox and Dish-Stirling. $150 million jointly funded program with utilities and manufacturers on Dish Stirling engines (Cummins 7 kW remote power unit is making good progress, and there are two other larger system efforts, both with utility involvement). (“Compendium of Solar Dish/Stirling Technology”, SAN93-7026 Printed Jan. 1994, by W.B. Stine and R.B. Diver, a new report surveys international state of the art.)

The National Solar Thermal Test Facility has an array of heliostat, dish and trough systems for running tests of various kinds.

The Solar Thermal Design Assistance Center provides technical assistance, helping clients select and apply solar thermal technology. (Contact David Menicucci, 505-844-3077).
Wind Henry Dodd, 505-844-5253

Historically, Sandia’s emphasis was on the vertical axis concept, however they have a new initiative to approach wind with a systems view, and have worked on materials and blade design improvements for all wind machines.
Geothermal Jim Dunn, 505-844-4715

Working to reduce costs — developing down hole instrumentation to reduce loss circulation, and”slim-hole” technology that could cut cost of drilling by 1/2 (appropriate for remote village applications). Also working on geothermal ground source heat pump concept (drilling, placement and heat exchanger design). Helped commercialize new drill bit.
• Fuel Cells Gary Carlson, Manager, Fuel Science Dept. 505-844-8116

This is a small program, using most internal lab directed funds, except for work for the DOE Office of Transportation Technology on advanced concepts. Goal is to develop partnerships with industry, and capitalize on Sandia’s capabilities in batteries, catalysis, and especially manufacturability. Note need for better materials to get long term performance. Sandia/Livermore is doing some work in PEM thin films, applying membrane supported catalysis to enable on board hydrogen production.

 

They see special opportunity to develop a small fuel cell (less than 1 KW) for remote applications, to compete with PV and batteries. One application could be gas pipeline condition monitoring.

Sandia has a broad capability to tailor properties of carbon foams, as applied to supercapacitors, advanced (Li) batteries, and fuel cells.

 

• Robotics Sandia Intelligent Systems and Robotics Center, Phil Bennet, 505-845-8777

Sandia is at the forefront of bringing defense and weapons related “Intelligent Systems and Robotics” to bear on commercial needs, and has grown to be the leading robotics R&D effort in the U.S. They focus on critical national needs (hazardous waste clean up and manufacturing competitiveness), reducing the time and cost to develop applications of advanced technology into practical systems, and improving the speed, quality and safety of operations. There is a strong emphasis on working with industry, universities and other government facilities.

Their approach is based on an open-architecture communications-based integration of sensors, mechanisms and software. Computer-model and realtime sensor-based control strategies make off-line programming possible, speeding the development of applications and systems.

Historically, DOE’s internal need for systems to handle small production lots led to the development of ways to reduce the costs of programming and fixturing.

Specific projects relevant to utilities include robotic welding of spent fuel barrels, saving on the order of $250 million and thousands of man rems of exposure. Another involves hot repairs to boilers — in fossil plants (proprietary — with an unnamed utility)!

This Center is clearly a potentially valuable resource for automating utility operations, as well as for industrial customers who develop or use robotics. A good overview is contained in a booklet called “Sandia is Changing the Way the U.S. Does Robotics.” Sandia staff have also authored a number of papers at robotics conferences.

 

• High Consequence Operations Russ Skocypec, 505-845-8838

Sandia’s Engineering Sciences Center encompasses computation, testing, and validation, enabling design trade-offs to be confidently evaluated. Evolving from a historical mission to support systems design and safety for nuclear munitions, they now can offer industry a means to quantify efficiency and safety issues pertaining to industrial accident phenomenology. Detailed risk assessment and coupled analysis and testing provide understanding of the physics of fires, crashes and blasts, enabling better decisions about prevention and response.

 

• High Performance Computing Sudip Dosanjh, 505-845-7018

DOE operates the Massively Parallel Computing Research Laboratory (MPCRL) at Sandia, which applies these new levels of computing power to a broad array of scientific and engineering problems, ranging from structural mechanics and acoustics to chemical reaction dynamics, genome mapping and astrophysics. In the last 4 years alone, the computational speeds have increased by a factor of 100. In collaboration with the University of New Mexico, Sandia has developed a unique operating system called SUNMOS, and their own linear equation problem solver gives them powerful capabilities in parallel computing.

A newletter called the MPCRL Research Bulletin is available.

[Perhaps a place to try some new approaches in power system modeling? Particularly in connection with the next item.]

 

• Distributed Information Technologies,

Rich Palmer, Manager, California Program Development, 510-294-13126

Sandia has a major role in developing technologies for distributed information systems that will contribute to building the “National Information Infrastructure.” Industry has needs similar to DOE’s Defense Programs to use cost-effective distributed information systems to access and process information. The issues are the same: manipulating large data sets, moving them around efficiently, and dealing with privacy and security issues. DOE labs have developed synthetic data sets as benchmarks for participants to perform their own validations and comparisons. The goal is to be able to run problems on very large parallel or distributed systems via high-speed networks.

Sandia has also built extensive testbeds to develop and evaluate distributed applications over Asynchronous Transfer Mode (ATM) networks tying together distributed computing resources. The testbeds include long-link emulators that simulate delays and errors encountered in wide-area networks over large distances. To complement those testbeds, Sandia has also developed a Monte-Carlo simulation based modeling capability for studying realistic network component performance and issues such as congestion control mechanisms for large networks. By including the proper physical representations of traffic models for sources and sink, the same modeling capability could by used to simulate the performance, utilization, and potential overload of wide-area electrical transmission grids.

 

• Sensors Marion Scott, Manager, Sensor Programs Dept., 505-845-8146

Sandia’s work in microsensor development includes acoustic, micro machine/micro electronics, fiber optics, and micro impedance techniques. They have their own complete CMOS IC fabrication capability in-house, as well as for gallium arsenide, enabling them to undertake unique development challenges, such as combining micro machined structures and associated electronics on an IC.

– A bulk quartz resonator can look at the condition of oil in situ. Other possible applications–monitor the state of charge of a Pb acid battery or the capacity of coolants.

– Surface acoustic wave devices coated with chemically sensitive films can sense chemical species in gas at parts per million by looking at resonance changes. With multiple coatings and using pattern recognition techniques it’s possible to distinguish multiple species. Has been packaged in a down hole tool for pollutant sensing.

-Hydrogen sensor on a chip uses special alloys that change their resistivity with maximum sensitivity to H2 concentration.

– Fiber optics offer another technique to sense a wide range of chemicals, such as hydrogen, mercury, SO2, chlorine, and various oxidants. The end of the fiber is coated with a thin chemically sensitive film that changes its reflectivity. CRADA underway with the JW Harley & Assoc to develop a H2 sensor for utility transformers.

– Micro impedance and capacitive sensors can measure physical features for manufacturing applications, e.g. detecting surface flaws in real time. This has been applied to textiles.

– Accelerometers measure vibration indicating structural changes. Sandia has developed a fiber optic/micro machine hybrid device.

• Materials Jim Jellison, Manager, Technical Business Operations,
Materials & Process Sciences, 505-844-6397

Sandia’s Materials Science and Technology program has 600 staff, and is the largest in DOE. Originally developed to provide non-nuclear components for weapons, it now offers services to a wide range of government customers and private industry. The forte is concurent design of the product and the process to make it.

Expertise includes welding, especially cold welding, and soldering; mechanics; tribology, especially lubricant free, with a focus in electromechanical devices; corrosion, emphasis on electronics (e.g., fluxes on circuits, dissimilar metals, batteries); corrosion kinetics, atmospheric testing facility (sensitivities in ppb); aluminum coatings–developing replacement process with less environmental impact; laser surface ablation.

Smart Processes — predictive models using phenomenological data enhances casting, heat treatment, welding, induction heating, etc.

Aging of organic/polymer materials-accurately accelerated aging tests. Applied to electrical cable in work for the NRC

• Reliability/Decision Making

Robert Cranwell, Manufacturing Systems Reliability, (505)844-8368

Industry and the nuclear weapons complex (NWC) rely upon the availability and reliability of equipment which can greatly influence operational costs. Equipment design, reliability, maintenance strategies, and spares inventories all contribute to the cost-of-ownership of factory or plant equipment. Sandia has developed capabilities to assist industry and the NWC in “design for reliability”, equipment improvement analyses, creation of maintenance strategies, and optimization of spares inventories. These capabilities have been broadly applied throughout industry, including the U.S. semiconductor industry, biomedical industry, machine tool industry, automotive and aircraft manufacturing industries, and solar power industry. The capabilities include custom reliability analysis software, optimization analysis techniques, predictive maintenance capabilities, and cost-of-ownership analysis tools. Key partners include SEMATECH and several of its member companies, Cincinnati Milacron, McDonnell Douglas, and USCAR (a consortia of the “big three” auto makers).

Sandia has been working with several major companies, including Motorola and Texas Instruments, to evaluate and qualify new environmentally conscious “no clean” soldering technologies that do not require subsequent cleaning of newly soldered printed wiring assemblies. These new processes are being used extensively throughout industry with great success (Two reports, 11/92 and 6/95, describing these efforts have been issued.)

The Energy Analysis Diagnostic Center (EADC) is a DOE/Office of Industrial Technology program at 30 universities around the U.S., which perform energy audits of companies. In conjunction with this program, Sandia is working with two of the NIST Manufacturing Technology Centers (MTCs) to develop an integrated energy, environment and manufacturing (EEM) assessment tool, the concept being that these three areas (energy, environment, and manufacturing) need to be assessed on an integrated basis, as an attempt to optimize in one area could cause problems in the others. This integrated tool would be used by MTC field agents to assist U.S. manufacturers in EEM related issues, and is being piloted in SIC codes 345, 346 and 347 (screw machines, stampings and forging and metal coating). The Sandia/MTC program is jointly funded by EPRI, NIST, EPA, DOE/OIT, and Sandia.

Follow-on opportunities are needed.

Detailed briefings or information are available on request.

[Perhaps this group would be a good resource to go after the T&D maintenance issue?]

• Micro SMES, Dean Rovang, 505-845-8277

Both Sandia and Los Alamos have a hand in this program to build a SMES unit that would be about 10x larger than Superconductivity, Inc.’s unit, and smaller than the B&W/Anchorage device. The application is Power Quality for industrial customers, and/or at the substation level — on the order of 10’s of MW for seconds. This is seen as a development project, not a research one, with the goal to learn if such a device is the solution to an industry problem.

CRADA negotiations are underway with one utility already, however there is very likely a way for other utilities to participate, if only by providing modest funding for a seat at the table.

• HyMelt, Stuart Purvis, 505-845-8392

The technology makes it possible to convert low grade hydrocarbon feedstocks (or fossil fuels) directly into Hydrogen and Carbon Monoxide (separate product streams!) while sequestering impurities, even producing elemental sulfur. There is no stack, and no emissions.

Ashland wants this technology for its refineries, to deal with the sour crude it often must buy, to produce hydrogen, and to handle refinery “bottoms”, which are a costly disposal headache. As a Hydrogen producer, HYMELT is estimated to be 30% cheaper than steam reforming when using the same feedstock, i.e. fuel gas. It is cheaper still when a waste stream is used as the feedstock instead.

Ashland Oil has demonstrated proof of concept in their labs, and has funding committed for a production installation. What’s missing is the piece in the middle — the intermediate scale demonstration R&D. Sandia is proposing to DOE/Fossil to fund the government side of a CRADA with Ashland, but with budget cuts, funds might not be available. Ashland has asked Sandia to look discretely for a partner interested in other fields of use, and who could put up $800k/year for 3 years, leveraging the many $ millions that Ashland has spent and committed.

[This information should be handled with discretion.]

Contact Al Sylwester Tel # 505-844-8151
• High power switching Don Cook, 505-845-7446

Sandia has developed very fast, very high power switching capabilities in connection with pulsed particle accelerators for fusion research and other work requiring fast pulses. For example, they can make a 20 megavolt, 10-20 megamp pulse with a 50 nsec. risetime.

It has been suggested that this technology might be applicable to utility needs, however an initiative would be needed to establish a dialogue between the developers and someone from the utility industry to explore the possibilities.

Sandia Contacts
General Telephone # is (505) 844-5678
In Livermore, CA (510) 294-3000

The primary contacts for UFTO are:
Alan P. Sylwester, Technology Integration Dept., 505-844-8151
Dan E. Arvizu, Director, Applied Energy Program 505-845-8336
Technology Transfer: 505-271-7888

Information Source Contacts / Technical Information Services:

Office of Public Relations and Communications : 505-845-7759

Publications:
“Laboratory Publications” 505-844-4902
Technical Publications 505-844-9285
Technical Library 505-845-8364