Posts

Zero Emission Coal (Los Alamos)

(One of a series of UFTO Notes based on the recent visit to Los Alamos National Laboratory)

Zero Emission Coal

Los Alamos is working to eliminate the environmental concerns associated with the use of fossil fuel, which will continue to be an important energy source well into this century. One technology the Laboratory is developing to achieve this goal is a zero emission process for converting coal and water into hydrogen, which is then converted into electricity, with virtually no emissions of pollutants. Thirteen entities with interests in coal production and energy generation have teamed up to form the Zero Emission Coal Alliance (ZECA) which plans to commercialize this process within five years.

The Technology In the context of DOE’s “Vision 21” goal to eliminate environmental concerns from the use of coal. Los Alamos is developing technology to achieve a zero emission process for converting a coal and water slurry into hydrogen, which is in turn converted to electricity via a high-temperature solid-oxide fuel cell.

The new process builds on CONSOL’s CO2 Acceptor Process, which was piloted in the 1970’s. While still relying on cycling of calcium oxide (CaO) to drive the production of hydrogen, enhancements produce separate streams of hydrogen and CO2. The hydrogen is used to generate emission-free electricity and the CO2 is reacted with abundant magnesium silicates to be permanently sequestered as a solid, inert and stable mineral carbonate.

Hydrogen gas is produced from water and coal using a calcium oxide (CaO) to calcium carbonate (CaCO3) intermediary reaction. Through a subsequent reaction, the calcium carbonate generated by hydrogen production is converted back into calcium oxide and a pressurized stream of pure CO2. The calcium oxide is recycled to drive further hydrogen production, and the CO2 stream is ready for easy disposal.

The hydrogen is fed to solid-oxide fuel cells to generate electric power, and the ~50% of waste heat produced by the fuel cells is not truly wasted because it is reinjected into the process to drive the calcination reaction.

The already pressurized CO2 stream is reacted with magnesium or calcium silicate mineral deposits to form geologically stable mineral carbonates. (The reaction is part of the natural geological carbon cycle; therefore, all mineral end products are naturally occurring and completely benign.) The mineral sequestration process is economically viable because the CO2 stream is non-mechanically pressurized in the hydrogen production process and the carbonation reaction is exothermic (i.e., it creates energy instead of consuming it).

In addition, the types of mineral deposits needed to carry out the reaction are abundant enough to handle all the carbon associated with the world’s coal reserves. Magnesium-rich ultramafic rocks, primarily peridotites and serpentinites, are the main candidates for mineral carbonation. Deposits distributed throughout the world, though in specific concentrated areas on each continent.
——–

The Alliance
Thirteen entities from the United States and Canada with interests in coal production and the use of coal for electrical generation have agreed to contribute $50,000 each to form ZECA.

Phase I: ZECA is currently structured with an executive team headed by Jim Berson, Director of Planning and Business Development from Kennecott Energy/Rio Tinto, a technology team headed by Dr. Hans Ziock, senior scientist at Los Alamos National Laboratory, and a business team headed by Alan Johnson, President of The Coal Association of Canada. The goal of Phase I is to develop a business plan and a technical plan leading to the completion of a pilot plant in a five year time frame.

ZECA has begun to proceed with Phase I. The alliance however still welcomes the participation of additional members to ensure a broad spectrum of industry participation and expertise. As alliance members, participants in Phase I have the opportunity to help guide the work conducted under the supervision of the technical and business committees, as well as the opportunity to serve or participate on those committees at their discretion.

Additional information is available online:
http://www.lanl.gov/energy/est/zec/zec.html

for technical information:
Klaus Lackner, 505-667-5694, ksl@lanl.gov
Hans Ziock, 505-667-7265, ziock@lanl.gov

for business information:
Jim Berson, 307-687-6049, bersonj@kenergy.com
Alan Johnson, 403-262-1544, johnson@coal.ca

(I have several technical papers from Los Alamos, which I can send on request.)

12th Ann. Conf Fossil Energy Materials

Just obtained the program for this upcoming conference..
http://www.ornl.gov/fossil/FEP_WCon.html

Twelfth Annual Conference on Fossil Energy Materials

Knoxville, Tennessee
May 12-14, 1998

The Twelfth Annual Conference on Fossil Energy Materials will review the work performed by the Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program. The AR&TD Materials Program provides needed long-range research in areas not addressed by the Department of Energy line programs and focuses on the unique needs of fossil energy systems which cannot be met by currently available materials. The intent of the AR&TD Materials Program is to provide major materials developments that can dramatically affect the feasibility of some fossil energy systems concepts. Research is conducted at national and government laboratories, universities, and industrial research facilities.

Current research activities will be described in oral presentations and posters by the researchers working on the AR&TD Materials Program. These technical presentations will address research on ceramic composites, iron aluminide alloys, advanced high-temperature alloys, and functional materials such as inorganic membranes, filters, activated carbon absorbents, and solid oxide fuel cells. Several developments are in the demonstration and commercialization stage. The status of these technology transfer activities will be presented.

Conference Details
The Twelfth Annual Conference on Fossil Energy Materials, sponsored by the U.S. Department of Energy and ORNL, will be held May 12-14, 1998, at the Hilton Knoxville, 501 West Church Avenue, Knoxville, Tennessee. Your registration fee of $150 (in U.S. dollars) includes: continental breakfast, refreshment breaks, a buffet reception, the extended abstracts, and a copy of the proceedings mailed to the registrants after the meeting.
The registration fee of $150 (in U.S. dollars) is due on or before May 1, 1998 and is non-refundable after May 1. Credit cards are not accepted.
A block of rooms is reserved until April 15, 1997, at the Hilton Knoxville (423-523-2300) at a rate of $64 per night plus tax. When making your reservations, please mention the Conference on Fossil Energy Materials.
For more information, please contact the conference coordinator, Judy Fair, at 423-576-7270 (fax: 423-574-5812).

————————————————————

PRELIMINARY PROGRAM
CONFERENCE ON FOSSIL ENERGY MATERIALS
Knoxville, Tennessee
May 12-14, 1998

SESSION I – Ceramic Composites and Functional Materials

Tuesday, May 12, 1998

7:00 Registration and Continental Breakfast
8:00 Welcome and Introductory Remarks, Program Managers, DOE and ORNL
8:20 Keynote Address – Marvin I. Singer,
Sr Advisor for Advanced Research,Office of Fossil Energy, DOE
8:40 Invited Speaker – Deborah Haught, Program Manager
Ceramic Fiber-Reinforce Ceramic Composites,
Office of Industrial Technologies, DOE
9:00 Development of Oxidation-Resistant Composite Materials and Interfaces
R.A. Lowden, ORNL
9:30 Environmental Barrier Coatings
J. A. Haynes, ORNL
10:00 BREAK

10:20 Corrosion Protection of SiC Based Ceramics with CVD Mullite Coatings
V. Sarin, Boston University
10:50 Iron-Aluminide Filters for IGCCs and PFBCs
P. F. Tortorelli, ORNL
11:20 Exposure Testing of Materials at Galatin Power Plant
J. L. Blough, Foster Wheeler
11:50 LUNCH

1:15 Development of Nondestructive Eval Methods for Structural Ceramics
W. A. Ellingson, Argonne National Lab
1:45 Mechanical Performance of Hi-Nicalon/CVI-SiC Composites with Multilayer SiC/C Interfaces
W. A. Curtin,Virginia Polytechnic Institute and State Univ
2:15 Modification of Slags and Monolithic Refractories to Reduce Corrosion Rates
J. P. Hurley Univ of N Dakota Energy & Environ Research Center
2:45 BREAK
3:00 Corrosion and Mechanical Properties of alloys in FBC and Mixed-Gas Environments
K. Natesan,Argonne National Lab
3:30 Solid State Electrolyte Systems
L. R. Pederson, Pacific Northwest Lab
4:00 Ceramic Membranes for High Temperature Hydrogen Separation
D. F. Fain, East Tennessee Technology Park

4:30 ADJOURN

————————————————————

SESSION II – Ceramic, New Alloys, and Functional Materials

Tuesday, May 12, 1998
5:30 – 7:30 p.m.

POSTER PRESENTATIONS – BUFFET RECEPTION

Development of Scale-Up CVI System for Tubular Geometries
T. M. Besmann, ORNL
Mass Transport Measurements and Modeling for Chemical Vapor Infiltration
T. L. Starr, Georgia Institute of Technology
Thermal Cycling Characteristics of Plasma Synthesized Mullite Films
I. Brown, Lawrence Berkeley National Lab
A Carbon Fiber Based Monolithic Adsorbent for Gas Separation
T. D. Burchell, ORNL
Mechanisms of Defect Complex Formation and Environmental-Assisted Fracture Behavior of Iron Aluminides
B. R. Cooper, West Virginia University
Study of Fatigue and Fracture Behavior of Cr2Nb-Based Alloys: Phase Stability in Nb-Cr-Ni Ternary Systems
P. Liaw, Univ of Tennessee
Weld Overlay Cladding With Iron Aluminides
G. M. Goodwin, ORNL
High Temperature Corrosion Behavior of Iron-Aluminide Alloys and Coatings
P. F. Tortorelli, ORNL
Electro-Spark Deposition Technology
R. N. Johnson, Pacific Northwest Lab
Poster
R. Walters, Albany Research Center
Oxide-Dispersion-Strengthened Fe3Al-Based Alloy Tubes
B. K. Kad, Univ of California at San Diego
Reduction in Defect Content of ODS Alloys
A. R. Jones, Univ of Liverpool
Low-Aluminum Content Iron Aluminum Alloys
V. K. Sikka, ORNL
Mo-Si Alloy Development
J. H. Schneibel, ORNL

————————————————————
SESSION III –
Workshop on Materials for Separation Processes for Vision 21 Systems

Wednesday, May 13, 1998

7:00 Registration and Continental Breakfast

8:00 Speaker: William Fulkerson
President’s Committee of Advisors on Science and
Technology (PCAST) Energy R&D Panel – Chairman
Fossil Energy Committee
8:30 Speaker: Howard Feibus, Director
Office of Advanced Research, Fossil Energy, DOE
This year’s workshop will focus on separations issues particularly
as they apply to the FE Vision 21 concept. Although Vision 21 embodies
several technologies in yet-to-be-defined configurations, materials
for separations systems will be critical to any and all of the
possible technology elements of a Vision 21 plant. Separations process
include, among others, gas-gas separations, such as the separation of
hydrogen from synthesis gas or from carbon dioxide, air separation to
produce oxygen, and gas-solid separation devices, i.e., hot-gas
filters. Representatives from companies working on Vision 21
technologies will establish a commercial perspective for the
separations processes and materials required for these systems. The
objective of the workshop will be to establish the highest priority
materials developments for these separations systems, and determine
how well the AR&TD Materials Program is addressing these priorities.

————————————————————

SESSION IV – New Alloys

Thursday, May 14, 1998

7:30 Registration and Continental Breakfast

8:00 Welcome and Introductory Remarks
8:10 Speaker:
John Stringer, Executive Technical Fellow
Strategic Science and Technology, EPRI
8:30 Development of ODS Fe3Al Alloys
I.G. Wright, ORNL
9:00 The Influence of Processing on Microstructure and Properties of Iron Aluminides
R. N. Wright, Idaho National Engineering Lab
9:30 Iron Aluminide Weld Overlay Coatings for Boiler Tube Protection in Coal-fired Low NOx Boilers
J. N. DuPont, Lehigh University
10:00 BREAK
10:15 Corrosion Performance of Iron Aluminides in Fossil Energy Environments
K. Natesan, Argonne National Lab
10:45 Effects of Titanium and Zirconium on Iron Aluminide Weldments,
G. R. Edwards Colorado School of Mines
11:15 Microstructure of Mechanical Behavior of Alumina Scales and Coatings
P. F. Tortorelli ORNL
11:45 LUNCH
1:15 Investigation of Austenitic Alloys for Advanced Heat Recovery and Hot-Gas Cleanup Systems
R. W. Swindeman, ORNL
1:45 Fireside Corrosion Testing of Candidate Superheater Tube Alloys, Coatings, and Claddings – Phase II
J. L. Blough, Foster Wheeler Development Corporation
2:15 Processing of Advanced Austenitics for Recuperator Service
P. J. Maziasz, ORNL
2:45 Ultrahigh Temperature Intermetallic Alloys
C. T. Liu and M. Brady, ORNL
3:15 SHS Processing and Properties of Intermetallic Alloys and Composites
W. Riley,Albany Research Center
3:45 ADJOURN