Posts

2001 IEEE T&D Expo

Atlanta, 30 Oct – 2Nov 2001

This was a large event, with over 9,000 attendees, 500 exhibitors, and 150 technical papers. Sponsored by the IEEE Power Engineering Society, it focuses strictly on T&D technology, though a number of special panel sessions dealt with big picture questions.

A great deal of information is still available online at:
http://www.ieeet-d.org/
Using the buttons on the left side, “Conference” goes to a complete program listing, and “Exposition” to the exhibitor list, complete with urls for most companies. The technical papers were published on a CD.

–Opening Session

Teddy Püttgen, PES President Elect, opened the conference with the comment that electric utilities continue to be “technology enabled” rather than “technology driven”, but that is changing. Allen Franklin, CEO of the Southern Co, explained that the spinoff of Mirant enables SoCo to focus specifically on the southeast. with its vertically integrated companies, competitive generation, and new services. He sees transmission as the hottest issue, e.g. in Congress. John Rice of GE Power sees big promise in digital networking of generation and T&D. David Stump of ABB expressed a similar vision, applying ABB’s corporate-wide “Industrial IT” strategy to the utility industry. Based on the experience in the UK, Ian Davis of National Grid talked about the need for incentives for T&D investment, efficiency and performance, leading to an emphasis on asset management. Franklin came across as a very traditional utility executive, when he dismissed fuel cells, quoting “30 years ago fuel cells were almost ready. They still are.”

–SuperSession- Deregulation

The presentions were far ranging and exhaustive, and it would take many pages to give the full flavor. Charles Stalone (former FERC commissioner) took a long time to explain the issues before Congress, to strike the right balance between free markets and protections against market power abuse. David Jermain, Anderson Consulting, gave an entertaining review of the history of California’s debacle– based on a very faulty design, state officials made it much worse once things began to unravel. (I have his powerpoint presentation which he kindly sent, along with an ok to share it selectively.) Mark Rossi (Barker, Dunn & Rossi) reviewed utility deregulation around the world. Many countries are doing it, some quite successfully, though no-one gets it right at first. Richard Tabors (Tabors, Caramanis & Assoc) discussed regulation of generators, and pointed out that price volatility is intrinsic to any commodity market–it’s the journalists who renamed it “spikes” in the case of electricity. Finally Paul Addison (SolomonSmith Barney) said that customers really care about total price, not the profits of individual players. Service penalties and bonuses are needed if there is to be any incentive for investment in T&D.

–“How to Become a 3rd World Utility”
In a panel session on T&D Reliability, Jim Burke of ABB outlined 10 steps to reducing reliability.
1. Eliminate experienced engineers; replace with young ones who won’t stay.
2. Don’t participate in standards setting.
3. Lose control over generation and transmission
4. Replace things only when they fail; keep for 50 years or more til there are no spare parts.
5. Buy on price (first cost). Don’t pay for quality.
6. Eliminate R&D
7. Reduce manpower and budgets
8. Overload equipment thus increasing failure rates.
9. Lose control over daily activities–overdo outsourcing.
10. NIMBY – no new T&D but not no growth
[ I can supply a pdf of this paper, from the conference CD]

*********

I visited a number of exhibitors. Here are some highlights.

– Arbiter Systems Inc. http://www.arbiter.com
High precision meters, traceable to NIST.
Can error-correct any meter to be much more accurate.
GPS clocks. Other interesting innovations..used by NxtPhase

– Cannon Technologies http://www.cannontech.com
Monitoring and control of loads and devices
Yukon modular software for distrib autom and demand mgt
eSubstation…low cost ($25K per substn)
Impressive customer list Sell only to utilities.
Started in ’87 w/ purch of a wireless subsidiary of ABB.
Announcing marketing deal with Honeywell soon. (load control thermostats)

– DTE Energy Technologies–“CableWise”
http://www.dtetech.com/technologies/cablewise/
The “only” insitu inservice live cable test capability–uses partial discharge
[[ Is it really true? Has this “holy grail” finally been found?]]

– IFD Corporation http://www.ifdcorporation.com
Clever little mechanical popout device the goes inside distribution transformer to indicate an overpressure has occurred- which means that a fault has occurred inside. Visible from the street. [Sort of like the gadget that tells you your turkey is cooked.]

– IMCORP http://imcorp.uconn.edu
Cable testing products and services. Experts in partial discharge. Company is on campus at Univ Connecticut, led by prominent professor. Took back license from UltraPower (Minn, MN) which closed.

– NxtPhase http://www.nxtphase.com
Optical PT/CT. Looking very strong. {See UFTO Note 22 Jun 2000}

– Power Line Systems http://www.powline.com
T-Line design/management software to 500 utilities worldwide.

– Power Measurement Ltd. http://www.pml.com/
Hi end meters for revenue and PQ monitoring. for large customers. OEM to ABB and Siemens. Sev. new simpler cheaper products.

– Serveron Corp. http://www.serveron.com
Monitoring transformer gas in oil, and battery systems. Received a lot of attention at their booth, and appear to be progressing rapidly. [See UFTO Note 14 May 2001}

=====Substation monitoring=====
(Besides GE, Serveron, Cannon, etc.)

– DoubleTree Systems http://www.dsius.com
comprehensive solution..have installations in China. Systems Control Inc. alumni

– Doble http://www.doble.com/
Has abandoned development of “InSite”. Doing individual modules instead, for later “integration” at IP level. First is for bushings. Will announce a transformer pkg very soon

=====Power Switching=====

ABB – AX1 Air insulated Medium Voltage Switchgear.
1/2 the footprint, cheaper, arcing eliminated, simple installation, low/no maintenance.
http//:www.abb.com — search for AX1

=====Other=====

Pole Plus http://www.poleplus.com
N Amer lic for EdF developed wood pole testing technology and management system. Acceptance is growing. [See UFTO Note 11 Jun 1999]

MiniMax Software Corp. http://www.minimax.net
Video surveillance specifically for substation monitoring, Also a distribution system “stakeout” pen-based computing solution.

The Valley Group. http://www.cat-1.com
Device measures trans. line cable tension directly; Plus nearby measurement of temperature the cable would be if unloaded — gives direct realtime reading of maximum possible loading.

Power Quality 2001

PowerSystems World 2001, Chicago – Sept 10-12.

As you know, I attended this annual conference held in conjunction with two power electronics conferences, all under the name of PowerSystems World 2001. Overall, the event was poorly organized and confusing to begin with, however, I’ve learned that a new company is taking over conference operations, so things may improve. More significant, the news on September 11 broke just as the conference was getting underway and had everyone completely distracted, so little was accomplished.

There were a few nuggets to extract, however. The plenary session papers were interesting, and I delved into one or two other issues with company reps on duty at their exhibit booths.

The conference proceedings have been published in a 5 lb. 2″ thick hardcover volume, can be ordered for $150 (plus s/h) from Linda McCay, 805-389-6600, linda@powersystems.com

Through December, the conference website will provide the agenda and other conference information: http://www.powersystems.com/

The opening plenary session papers were not provided in the proceedings:

————-
“Power Electronics in Power Systems: Technology and Business”
– Vlatko Vlatkovic, General Electric Corporate R&D
With advent of distributed generation, any source that isn’t constant speed synchronized will require significant power conditioning, i.e. “four-leg” converters for fuel cells and microturbines. Such power conversion technology is derived from motor drives using IGBTs (in the 20 KVA to 2.5 MVA range). Large DC systems (100+ MW), e.g., high temperature fuel cells (solid oxide), need conversion from low voltage DC to high voltage AC. Market drivers are strong, but complicated. With utilities’ conservatism, it will be hard to make money, and the technology is changing rapidly. Regulation of transmission systems (and the coming RTOs) means limits on ROI.

————–
The Motor Drive Revolution in the Energy Starved Generation
– Dr. Alexander Lidow, International Rectifier

IR sees huge opportunity, and high payback from power management technology. 57% of electricity consumption goes to motors, most of which are controlled on/off, which is very inefficient. Savings would be substantial if variable speed drives were used in refrigerators, washing machines and air conditioners. Barriers include cost, time-to-market, and the need for multiple engineering skills to apply technologies in analog/digital (A/D), sensors, power semiconductors, and software control. IR has developed “Accelerator” architecture development system and a “ChipSet” to simplify and facilitate the design process.
Tech info: http://www.irf.com/prmU7avc/product-info/motor/
For papers: http://www.irf.com/OxJB7a4c/e/powersys01.htm

————-
Data Center/Facility Infrastructure Design For The Next Millennium
– Neil Rasmussen, American Power Conversion

This paper challenges a number of assumptions about the future power needs of Data Centers. (I have the complete text, which I can forward on request.)

First, an enumeration of the problems driving change:

– Data Center owners get poor ROI on power systems, because they install much more capacity than they can use, and it sits idle, while capital and service costs continue.
– Need to standardize and “drive out variability”. The industry is full of mythology, and there are limited opportunities for systematic learning. Troubling events are random and rare. Installations are one-off custom designs. (reminiscent of nuclear power plants?)
– Can’t predict system requirements. Computer systems become outmoded and are replaced in 2 years, while power systems expected to last for 15 years. That’s 7 generations ahead of the loads being served.
– Systems can’t adapt to increases or decreases, so installations are grossly oversized.

Then, some predictions:

1. No more raised floors – wiring will be overhead, floor will be a slab — cheaper, more secure, air treatment easier to manage, etc.
2. AC will prevail. Need open architecture, so DC will remain limited to inside of closed systems (boxes). Also, adding a new DC drop is expensive.
3. Overloading will occur because power draw of new data equipment varies (2-5 to one) depending on computing activity level, unlike most present-day systems.
4. Instead of focus on total facility loads, discussion will move to “watts/rack”, not “watts per sq.ft”.
5. Modular scalable systems will replace highly (site-specific) engineered solutions. The whole system will be made with cookie-cutter prefabricated modular scalable systems, designed and delivered “just-in-time”.
6. Fast-cycle centers. It now takes 9-18 months to design, purchase, install, and start-up a center. In 2 years, this will drop to 3-6 weeks. This will be accompanied by big changes in the financing and capital structure.

— In another paper from APC, Chris Thompson outlines overall design issues for data centers, pointing out that redundancy is often put in the wrong place, i.e. at the last step before the load. The lack of training for facility personnel means that human factors play a bigger role than they should.

—————
Power Management -Not an Option
– David Kreiss, Kreiss Johnson Technologies

For most industrial and commercial firms, power is a sizable part of their cost of operations, but many have yet to realize that it can and should be managed. The average CFO sees electricity in particular as the least controllable of all – a fixed cost. This view may have been valid in the past, but there have been big changes in the business and power environments, and now, power procurement is negotiated, in terms of both cost and quality. Savings go straight to the bottom line.

—————

Over 100 technical papers, published in the proceedings, were organized under these headings:

-PQ Solutions, -PQ Battery, -PQ Standards, -Distributed Generation, -PQ Monitoring, -PQ Distribution, -PQ Harmonic, -PQ Flicker, -PQ UPS, -PQ TVSS
(The complete program is available as a download:
http://power.bluedot.com/power/pdfForms/pq_confdetails.pdf)

Some highlights:

“PQ Impacts of Distributed Generation”, Roger Dugan, Electrotek Concepts, (page 190) admitting a “pro-utility” bias, went into some detail on complex technical issues arising from the placement of DG on a utility distribution system:
– Fault overcurrent in radial feeders can come from 2 directions; DG must also disconnect.
– Low voltage after interruption- DG needed for voltage support, but can’t come back on until the voltage is restored.
– Reclosing, because most faults are temporary, usually done in less than 1 second (many utilities do it “instantly”). If DG doesn’t do the same, fault won’t clear.
– Transformer connection issues-Wye delta seen as best, but utilities forbid DG to use it, because of grounding dangers.
Engineering solutions can generally be found for these and other technical problems, but there are no simple answers, and there are questions as to who should pay. DG can be used with “no changes” if less than 15% of a feeder load (5-10% if rural).

New Ride-Through:
There were several new technologies for UPS ride-through (i.e., to a standby generator):

– Active Power is developing an Integrated Flywheel Microturbine. The flywheel spins on the same shaft as the turbine rotor, and can provide instant power until fuel is supplied to the microturbine, which then takes over for as long as necessary.

– Precise Power’s written pole technology has been used in a flywheel motor/generator for over 10 years, for short term ride through. Can be integrated with an IC engine for long term backup.

– Metallic Power’s Zinc-Air system is being applied in a rack mounted version for use in data centers. Longer ride through (many hours) at the rack itself avoids reliablity problems of facility based UPS systems (and the siting and emissions issues for gensets).

Battery Systems:
Some interesting controversies are evident in the world of lead acid battery systems, regarding monitoring and charge balancing.

Charge balancing, or “equalization”– we’ve seen AutoCap previously (UFTO Note – Travel Reports, 29 Oct 2000) proposing a system to float-charge cells individually–don’t know how they’re doing. PowerDesigners is now promoting its “PowerCheq” modules which interconnect adjacent cells in a string, and uses stronger batteries to top off weaker ones. (www.powerdesigners.com) The problem is that greybeards in the industry insist this is the worse thing you can do! In particular, it will mask a problem with a bad cell until the whole line goes down.

Similar reactions are heard to a novel pulse conditioning method, called ReNew-IT, invented by Pulse Tech Products. They apply a unique waveform pulse train to the battery string, explaining that it clears away sulfation deposits that block plates and decrease life. Apparently the military has taken a hearty interest, but another industry greybeard told me–one should just never never apply AC of any kind to a battery.

Battery monitoring also has ideological splits, e.g. whether resistance, impedance, or conductance is the right thing to measure. Btech (www.btechinc.com) says they’re the oldest and best supplier of “battery validation systems” and insist that impedance is the way to go. Their counterparts at Alber say resistance (www.alber.com — they sponsor an annual conference on the subject). (Both show a long list of prominent clients, with a lot of overlap, e.g. the NY Stock Exchange!) And newer arrivals, Midtronic and Vanner (www.vanner.com) have their views as well.

Serveron, a new entrant, is getting an excellent response from major customers with its CellSense technology, which answers all the greybeard concerns and then some. (See 14 May 2001 UFTO Note – On-Line Transformer and Battery Monitoring). CellSense monitors provide continuous measurements of all key physical and electrical parameters needed to characterize the condition of all individual cells as well as the battery system as a whole. www.serveron.com
(They’ll be showing at the IEEE T&D Expo in Atlanta, which opens Oct. 29. I’ll be there as well)

On-Line Transformer and Battery Monitoring

Serveron Corp. launched itself in February as the industry’s first provider of full time monitoring services for T&D equipment. Starting with the gas-in-oil sensors developed by a predecessor company, Micromonitors, Serveron offers a complete solution, from instrumentation, to on-line monitoring, to (condition-based) maintenance scheduling and asset management, to risk management. The company also has comprehensive monitoring technology for station battery systems. The complete suite of applications also covers tap changers, arresters, bushings and breakers.

Large Power Transformers:
Note some alarming facts about the T&D infrastructure, and large transformers in particular. The fleet is “graying” — the average age of units now in use is 35 years. Hartford Steam Boiler has data showing an exponential increase in serious failures: 1% of large transformers (1,000 transformers in the US alone) will fail this year, and the failure rate will rise to 2% by 2008.

The average cost of such a unit is $2-3 million and lead time for new ones can exceed a year or more, so a major failure has very significant implications. An early target — powerplant step-up transformers. Any event that could take part or all of a plant’s capacity off-line for a long time becomes even more crucial in today’s climate.

In addition, major savings can be realized with true condition-based maintenance. Since monitoring and diagnostics have not been readily available or cost-effective, utilities now perform maintenance on arbitrary schedules, but estimates are that 30% to 50% of that work is unnecessary. Finally, capital equipment replacements can be prioritized and scheduled in ways that specifically minimize physical and financial risk.

Serveron’s TrueGas™ analyzers monitor the levels of volatile dissolved gases in the insulating oil in large transformers and other oil-filled equipment. Over the life of a transformer, fault gases form due to the degradation of the insulating materials or from the presence of thermal or electrical faults. The type and concentration of these gases are primary indicators of transformer condition and types of faults.

TrueGas analyzers are the only instruments available today that detect and separately analyze trace levels of all eight fault gases. Other instruments detect only a subset of these gases or provide only combined gas data that may not accurately predict equipment failures.

Since serious problems evidence themselves only hours to days before a failure, realtime online measurements and analysis are critical. Test procedures that involve the periodic drawing of samples and sending them to a lab just can’t do the job.

Serveron’s on-site equipment and Web-based analysis software provide continuous monitoring during actual operations, and thus early identification of transformer conditions that require maintenance or that could lead to catastrophic failure of the equipment.

The company will also integrate other sensor data into the system, such as electrical, thermal and mechanical (e.g. acoustic/vibration) parameters.

Battery Systems:
All power plants and T&D substations have large banks of batteries which provide back-up power required for startup and for graceful shut down in the event of an unplanned outage or equipment failure. There can be 50 to 70 truck-battery-sized cells in each bank, for a total of tens of thousands of individual battery cells in an average utility, at hundreds of remote locations. Inspection and maintenance is a major cost, as these systems must function when called upon. (In nuclear plants, they also have to be available, or the plant may have to shut down.)

Serveron’s CellSense™ monitors provide continuous measurements of all key physical and electrical parameters needed to characterize the condition of all individual cells as well as the battery system as a whole. CellSense™ instruments monitor the batteries on-site, and graphical data can be viewed from any remote location using a common browser to access Serveron’s secure web site. With CellSense™ monitoring, battery maintenance and inspection can be reduced from a monthly to an annual activity.

I have a company powerpoint presentation (400kb) that I can send on request, and more information is available on the company’s website:

http://www.serveron.com/

Contact: Jim Moon, CEO 541-330-2350 jim.moon@serveron.com