Posts

Technology Transfer Opportunities – Argonne National Laboratory

by Edward Beardsworth
September 1994

Summary

This report details findings about technology and technology transfer opportunities at the Argonne National Laboratory (ANL) that might be of strategic interest to electric utilities. It is based on two visits to ANL near Chicago Illinois (in November 1993 and May 1994), as part of a project for PSI Energy, which had the additional goal to establish relationships that will enable PSI to monitor developments and gain access on an ongoing basis.

Background
Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, PSI Energy supported this project to become familiar with the content and process of those programs, and to seek out opportunities for collaboration, demonstration or other forms of participation that will further the business objectives of PSI. PSI has agreed to make these results available to the participants in UFTO.

ANL Organization

Similar to other DOE labs, ANL has a matrix organizational structure of “Divisions” and “Programs”. The divisions are aligned by programmatic area, and have the people, projects and budgets. Programs are mainly to coordinate the Laboratory’s efforts across divisions. In a few instances, programs take on a larger role, e.g. in the case of fuel cells.

Both divisions and programs live in research “ALD’s” or Associate Laboratory Directorates, headed by Assoc. Lab Directors who along with other administrative and support groups report to the Laboratory Director (Alan Schriesheim).

Argonne’s four research ALD’s are:
– Physical Research (basic research in fundamental sciences)
– Advanced Photon Source (a new high energy x-ray facility for basic research)
– Engineering Research (mostly advanced nuclear and national security)
– Energy & Environmental Science & Technology (EEST)
(name recently changed from “Energy, Environmental and Biological Research”)

Of these, virtually all work of potential interest to utilities is in EEST. However it’s important to understand that EEST has Programs that are carried out by cross-ALD, cross-divisional teams. For example the work of the Electrochemical Technology Program involves major participation by staff from the Chemical Technology Division of the Engineering Research ALD.

ANL has a number of “User Facilities” and “Centers” that focus on particular subjects, and make special equipment, facilities and expertise available to outside users, on a fee or collaborative basis. These are housed within programs and divisions.

ANL also takes on a program management role nationally on behalf of DOE, for some aspect of a DOE program, e.g. supporting PETC or METC or the DOE program office directly, or in collaboration with another national lab.

One other general point: each labs annually publishes an “Institutional Plan”, which is organized according to which DOE Program Office supports the work, not the lab’s own organizational structure. Thus a “mapping” between the two structures is required to be able to see the work of the groups within a lab. In most instances, divisions and programs also publish annual progress reports, providing detailed though not always current accounts of the work

EEST itself is divided into 3 areas reporting to “General Managers”, and then into the divisions and Programs:

1. Energy & Industrial Technologies (Richard W.Weeks, General Manager, 252-9710)
(approx. # people)
Energy Systems Division (Norm Sather, Director, 252-3724) 200
Energy Technology Division (Roger Poeppel, Director, 252-5118) 120
(formerly called Materials & Component Technology Division)

Energy Efficiency and Renewable Energy Program (William Schertz)
Electrochemical Technology Programs (Mike Myles)
Fossil Energy Programs (David Schmalzer)
Industrial Technology Development Center (Don Mingesz) (acting)
(formerly called the Technology Transfer Center)

2. Environmental Sciences (Terry Surles, General Manager)
Environmental Research Division (Chris Reilly, Director)
Environmental Assessment Division (Anthony Dvorak, Director) 170
Decision & Information Sciences Division (Paula Scalingi, Director) 150

Environmental Technology & Restoration Program (James Helt)
Global Climate Research Programs (Ruth Reck)

3. Center for Mechanistic Biology & Biotechnology (E Huberman, Director)

Area Code is (708)
ANL Technologies & Programs

Covered in this section:

• Fossil Energy Program
• Advanced Cogeneration
• Plasma Chemistry
• Waste Mgt & Bioengineering
• Environmental Control Technology
• Geographic Information Systems and Environmental Capabilities
• MSW/Biomass Processing
• Advance Heat Exchangers
• Technology Evaluation
• Energy Technology Division Capabilities
• Measurement and NDE
• Superconductivity
• Ice Slurry/District Cooling
• Fuel Cells
• Batteries
• Environmental Assessment Div.
• Decision and Information Sciences Div.
• Global Climate Change Program

Telephone Area Code is (708)

• Fossil Energy Program Dave Schmalzer, Manager, 252-7723, or 202-488-2415 in Wash DC
Manages programs funded by DOE Fossil, including fuel cells. Also $$ from other sources.
Advanced Environmental Control Technology (under PETC). Increasing attention to air toxics, bag houses may be workable if adsorbents can be found. Coal Fired MHD a semi success technically, has been phased out by DOE. Direct Coal Turbine–ANL advisory to METC. Two approaches: UTC doing direct combustion of pulverized coal, and Foster Wheeler’s is mild pyrolysis, with char to be burned on water cooled walls (divides the coal into 2 parts).
Research on multi-phase flow — coal slurries. Also ion-exchange to put catalyst metals into the coal prior to liquefaction.

“Argonox” additives to reduce NOx — Pilot test at CG&E — Dave Livingood, 252-3737
Alkali control for PFBC — newly hot topic — Sheldon Lee, 252-4395
CO2 capture, utilization and disposal for IGCC — Richard Doctor (ESD)

• Advanced Cogeneration Roger Cole, 252-6245
O2 enriched air for diesels; H2O emulsified in fuel; low grade fuels
— research stage results –incr. power, reduce particulates, but incr. NOx
–Dupont looking at membranes to produce O2

HPSS (High performance steam system) hi pressure hi temp steam bottoming cycle for GT — DOE and Solar Turbine: Overall electric efficiency 55%, with flexible electricity/heat ratio — looking for industrial cogen demo site. OPPORTUNITY (may be too late)
Also can use it for stand-alone once-thru boiler–unique turbine, thick wall tubes in hi-temp section prevents H2 corrosion.

Tool/method to estimate “value” of steam from Cogen –> better pricing

• Plasma Chemistry John Harkness, 252-7636
Waste Treatment for H2S — big electric load– Based on Russian work — ANL has a proprietary position. Needs demo. Individual reactors 1-2 MW (EPRI/Houston & Ami Amarnath are aware of the project).
Destec gasifier repowering produces H2S — Microwave technology could recover chemical/fuel value of H2 (no current H2S treatment process can do this).

Other applications for plasmas and microwaves: degrading plastics for recycling, novel materials, hazardous waste disposal. (Research Cottrell/PETC project tried radio waves on stack gas, and got more NOx.)

• Waste Mgt & Bioengineering Jim Frank, 252-7693
Keen to solve problems! New aggressive group looking for business. Combined multidisciplinary group to develop better solutions for waste treatment problems, source reduction, and high-value by-product production. Doing projects for EPRI: Arsenic removal (Mary Maclearn) Corrosion, microbial (Joe Gilman).

Other areas of work include: removing impurities from Al scrap, removing lead from brass and bronze scrap, recovering plastics from auto scrap; recovery of H2S — H2 and S; converting food wastes. Also soil remediation, membrane separations, air toxics treatment, remediation sensor development, environmental biotech.

• Environmental Control Technology Dave Livingood, 252-3737
Test facility for dry scrubbing and spray drying –HANDBOOK — “5 yrs ahead of EPRI’s HSTF”. Combined NOx/SOx control –developed additives, systems for both wet and dry scrubbing at lab and pilot scale.

Dravo-Lime ThioNox (like Argonox but better) — add chemicals to wet scrubber to remove NOx along with SOx — it works! CG&E pilot will clarify economics in 1 yr.

Spray-dryer/fabric filter FGD for high sulfur coal — showed long term reliable operation

Air Toxics –have PETC to work with — how to capture heavy metals such as mercury.
dry sorbents (carbon) in wet scrubbers — waste testing (what’s in the output)
Activated carbon performance extreme variation depending on type/source

Sequestering CO2 from IGCC –system study of costs for METC. Estimate all costs, emissions from mining on. Don’t wait till the stack; modify the plant with a shift reactor to H2, and capture the CO2. Algae approach unrealistic.– paper 11/93 at Dallas PowerGen.Conference.

• Geographic Information Systems and Environmental Capabilities Pat Wilkey, 252-6258
Innovative Spatial Analysis system, began work 5 years ago for GRI on pipeline right-of-ways. Provides visualization of various “false terrains” e.g. when cost or other impact factors replace elevation as the z-variable. Allows routes to be optimized against different scenarios and tradeoffs. Graphic imaging to model the visual impact of projects (e.g. a transmission tower) against the “view-shed”. GIS can be a logical extension of CAD-AM/FM systems, as an integrated system.

Argonne also has extensive multi-disciplinary capabilities for analysis and field work in site rehabilitation and restoration.

• MSW/Biomass Processing Ole Ohlsson, 252-5593
Fuel pellets from MSW to cofire with coal–handles like coal — OK in cyclone or grate, not PC.
In ’87, tested 100’s of binders–lime works the best. NSP (NRG Energy is unreg subsid) is building a facility–EPRI involved. CRADA with Otter Tail, — Archer Midland Daniels, Decatur, wants to cofire in their FBCs.

• Advance Heat Exchangers Tom Rabas, 252-8995
“Enhanced Tubes” for condensers — actively seeking new users — TVA (only utility so far) doing it in 18 units, starting 14 years ago — see Power Engineering July ’93 page 36. ANL has software to predict heat rate improvements. Heat transfer enhanced x1.7. NIPSCo has a program, Alabama Power did some tests a while back; NYPA and PP&L are interested.

Need host utilities to test tubes. ANL would facilitate and provide specs, measurements and test program OPPORTUNITY

– Proposed a plate/fin type heat exchanger for H2 – cooling in generators –could reduce costs of new units — Westinghouse contact. CRADA proposal not selected. (copy on hand).

– With PG&E, proposed a study of potential to improve cooling of transmission transformers to increase system capacity. CRADA proposal not selected. (copy on hand).

(Note: this program is funded by DOE Industrial, not power program — these ideas tend to fall in between.)

• Technology Evaluation Alan Wolsky, Director, Industrial Partnership Program, Energy Systems Div. 252-3783
Capabilities available to utilities: (Crada or hire ANL)
– Modeling combustion–esp. FBC, erosion, gas-solid flows.
– Studies on CO2 capture/use.
– Recover SO2 as salable liquid (proprietary-ANL is under nondisclosure to an outside co.)
– SMES Demo/test–ANL has an idle magnet — 180 MW sec– could do Power quality tests.
– Superconductivity–available to consult; internal study on future applications
– Scrap Metals recycling — Tom Sparrow at Purdue has studied this with utilities
– Coal Ash — general area of interest, e.g. metals recovery, other..

• Energy Technology Division Capabilities Roger Poeppel, Director, 252-5118
Ken Natesan, 252-5103

– Component Failure Analysis — standing agreement to do tests for Commonwealth Ed.
– Corrosion — alloys, coatings. Particular focus on combustion and power plants via DOE Combustion 2000 program funding — sulfur-bearing gases effects, erosion prevention, etc. In ’70s, developed refractories for coal gasification–resistance to corrosion and thermal shock–led into ability to do HTSC materials.
– All kinds of NDE
– Thermal Hydraulics and Fluid Mechanics — two phase flow, heat/mass transfer, flow-induced vibration ( issue for steam generators).
– Tribology — measure friction and wear; surface coating apparatus/techniques, lubricants

• Measurement and NDE Paul Raptis, 252-5930 & Stephen Dieckman, 252-5628
Acoustic leak detection (for Con Ed) Put microphones in the system — Identifying noise signatures for Steam Leaks. Some big wins finding leaks. NSP involved in testing. (Valves, boilers–straightforward, EPRI doing it.) Can apply to any steam system, not just distribution systems. Working on ASME guidelines. Next area for study is water leaks. Applicable in power plants!
Non-intrusive viscometer–good at high viscosity have working prototype — several manufacturers. interested.
Surface Wave Chemical Detector–exists commercially, but needs applications development, e.g. for stack gases.
Mass Spectrometer fits in a briefcase, measures to ppb; more sensitive than current CEM methods.
MM wave sensor chemical spectroscopy- recently declassified arms control spin-off. Can look at large spaces, e.g. plumes–wide angle, and as good as Lidar.
Measurement, generally — flow, density, concentration, on line NMR (chemistry), NDE via optics, acoustics neutrons, microwaves. Effluent detection. Stress analysis.

• Superconductivity John Hull, 252-8580, and Ken Uherka, 252-7814
High Temperature SuperConductors (HTSC) — 3 distinct areas of work: (all projects are with outside companies!)
1. Basic theory — physics and chemistry
2. Materials fabrication — wire and tape for devices (with mfgs.) largest Federal program center for measuring samples. Use high flux neutrons to look deep in metals; look for O2. Adding particulate Silver to increase fracture resistance. Alloy, draw, roll and heat treat–need grains aligned. Wire development getting close to practical for devices.
3. Applications (notably in the electric utility industry)
– Intermediate link for existing Low temp (liquid He) SC applications, as current leads to the outside, to get lower cooling and insulation needs — for SMES w/ Superconductivity Inc’s 1 MW-1 sec. UPS. Also for B&W 1/2 MW-hr (@ sev. MW for 5-10 min) SMES for Anchorage Electric (TRP/DOE funding).
– Fault current limiter–limits by going from superconducting to normal, limiting rather than interrupting–allows higher transmission line loading. Issues whether to interrupt all 3 phases, and question whether application limited to large concentrated loads.
– Levitation — very different materials requirement–don’t need to align grains! For very low friction bearings, flywheel energy storage program for large diurnal storage systems (with Comm Ed).
(DOE solicited teams 1 year ago for Superconducting Partnership Initiative to develop applications. ANL proposal with Allied Signal unsuccessful–had found sev. utilities willing to invest–Comm Ed, Southern, C&SW, NiMo…)

• Ice Slurry/District Cooling Ken Kasza, 252-9260 (additional info on hand)
Advanced energy transmission fluids–study for DOE — phase change and particulates in water
Additives to reduce friction in flow — very effective

Pelletized ice can be pumped with water in existing chilled water systems or new systems–greater heat transfer capacity & reduced pumping load, and customer storage volume is reduced by factor of 10. Small scale field demo being built with EPRI and NSP–NRG (unreg) subsid has proprietary position–sees business oppty in engineering consulting, licensing and TOU rates.

Handbook done–design for slurries. Have plan to develop Engineering Design Database (whoever does this will control the technology).

Large scale demo will be at ANL–800 ton ice maker–looking for utility participation–need funding for detailed engineering, testing, analysis, etc. Proprietary rights available.

Window of Opportunity –Equipment makers/users will have to phase out CFCs! Utilities can offer central cooling–sell ice , do peak shaving on customer site. Unreg business to sell engineering, equipment, service.

• Friction & Wear Technology George Fenske 252-5190
Surface Modification and characterization, and friction and wear assessment

Protective Surface Modification for High Temp. Alloys — dramatic increase in corrosion resistance of protective scale, by vapor deposition of silicon and high temperature heat treatment–feasible for treating large areas. (Jong Hee Park 252-5104)

Boric-Oxide/Acid coatings-dramatically effective high temperature bearing lubricant (R&D 100)
Diamond-like carbon on steel or ceramics — reduce friction and wear in bearings, fuel injectors, etc.

• Fuel Cells Mike Myles, Director, Electrochemical Technology Program, 252-4329
Michael Krumpelt, Manager, Fuel Cell Technology, 252-8520
ANL does in-house research and is lead lab for DOE Fuel Cell Program and manages the fuel cell effort. Solid Oxide(SO) and Molten Carbonate( MC) for stationary power applic. As phosphoric acid (PA) is considered to be a commercial reality, the only work at ANL is some management activity.

Also Polymer Electrolyte and DOE Bus Program for Transportation. Ballard Technology and Dow aggressive on PEM — big R&D effort with Mercedes Benz and others. Ballard is sub to GM-Allison for DOE passenger car. (IFC pursuing with GE lic., as is Seimens) On-board methanol –>H2

Argonne does Systems Analysis for DOE and EPRI, and work on CO tolerant catalysts and partial oxidation reforming.

MC — gets most of the R&D funding. Some in-house, some to MC Power for electrode development–goal is longer life cathode–trying double doped materials and conductive ceramics. DOE program goals are to double the power density to over 3000 amps/m2 to reduce the plant footprint, to simplify the design and to reduce corrosion. 10 years ago, MC was thought to be the next generation of fuel cell. Not working out easily. Demos in 2-300kw to 2 MW. R&D to increase power density and new stack configuration for cheaper mfg.

SO — Westinghouse is the prime developer. 25-40KW system demos. Alternative for Distributed Generation. More entries internationally. In U.S., B&W with a major chem co. Also, Allied Signal is prime to ANL for work on “Monolithic SO”. Need to control shrinkage, flatness, match coeffic. of thermal expansion–going to thin layers.

ANL has some funding from SCE — opportunities in SO. EPRI forming consortium for new concept “Planar SO” (Rocky Goldstein and John O’Sullivan)

Suggest that in the long run MC may drop back and end up like phosphoric acid (basically leapfrogged) — remains to be seen! World competition is picking up, and U.S. losing lead. The Westinghouse SO technology is expensive. Utilities unwilling to pay higher initial cost of early systems, and private sector can’t do it by themselves (DOE study by Prof. Penner –why commercialization hasn’t happened). Need utilities to work with mg and govt. to commercialize existing systems and support new concepts — 3-way teams.

PEM, primarily being developed for transportation use, could reach low cost mass production first–despite disadvantages for stationary use. Dow is committed to be supplier of membranes –ANL to do concept design for stationary applications. OPPORTUNITY for a 3-way partnership–other utilities avoiding, due to belief that PEM not appropriate for stationary.

NREL/DOE solicitation on infrastructure for H2–utilities to have role in demos.

• Batteries Gary Henriksen, 252-4176
Most action is in transportation. Hybrids getting attention. High power requirement is a problem.
ANL has proposed a bipolar Li Sulfide battery–has small funding from USABC.
ANL has major battery test facility, able to handle anything from cells to systems. All work is tied to manufacturers, one way or another. ANL did ABC tests — results to be announced very soon.

• Environmental Assessment Div. Tony Dvorak, Director, Contact: Dale Pflug, 252-6682
Environmental Impact, Decision support software, Risk Management — lots of work for others

New program Technology Connection: Identify needs for restoration at DOE sites, and identify/inventory available technologies in DOE that can be used–verify claims. Also search for technology domestic and foreign–now monitoring over 800 items in Database.

Expedited Site Characterization — Shrink time and cost by 90% — first done for Dept. of Agric, now being implemented across DOE–accepted by EPA and state regulators. Looking of users, collaborators and trainees. Smart sampling schemes, based on other information.

“ConSolve-site planner” visualization tool
“Plume” licensable code, could add transport and ground water modeling
Chemical Risk Code based on radiation risk code
Geographic Information Systems: graphical interpretation for environ impact, planning.

• Decision and Information Sciences Div. Paula Scalingi, Director
Contact: Dave South, Technology and Environmental Policy, 252-6107

– Compliance with Environmental Mandates (e.g. CAA, CWA,CERCLA/RCRA, greenhouse gases, etc.) — Analysis of regulations, synergies and conflicts, trade-off analysis/ decision framework at the plant level of compliance strategies, vis a vis other business goals, rate regulation etc. A dynamic and complicated process. Models developed allow rapid assessment of scenarios, based on actual plant data.

– Incentive regulation–adoption of innovative technologies–detailed analyses.
– Integrated Resource Planning
– Technology Assessment (e.g. CFC replacement — utilities need to inventory commercial a/c installed base and plan a response.)
– AI applied to reliability/value based maintenance. Did earlier (non-AI) work on boiler aging/vintaging.

– R&D Portfolio Management–long standing program for Defense Nuclear Agency, and other applications (e.g. Wisc PUC!) –software and information gathering techniques. A rigorous approach using multi-attribute utility function decision techniques, for optimizing portfolio and prioritizing projects, against measurable objectives, as the situation changes.

• Global Climate Program Ruth Reck, Director (Contact David South)
Climate Processes, Societal and Environmental Impacts, Response Strategies and Assessment, and Data Management. Policy and Regulatory analysis; interactions between climate change and other environmental issues (domestic and international); voluntary/joint implementation. Publish an extensive quarterly report called “Global Change Scaler”.

ANL Contacts (general phone # is 708-252-2000)

The primary contacts for UFTO are:

Thomas J. Marciniak, Manager Industrial and Utility Technology, Energy Systems Division,
252-5860

David W. South, Technology and Environmental Policy Program, Decision and Information Sciences Division, 252-6107

Roger Poeppel, Director, Energy Technology Division, 252-511. Also Chuck Malefyt, 252-5125

Technology Transfer:

The Industrial Technology Development Center (ITDC) (formerly called the Technology Transfer Center) — Don Mingesz is the acting director; Primary contact is Shari Zussman (252-5230) — is administratively located in EEST, but serves the entire lab. It handles interactions with industry and DOE on all tech transfer matters. The ITDC has a Hotline 800#: 1-800-627-2596.

ITDC publishes a newsletter called Tech Transfer Highlights. Call the above hotline # to be put on the mailing list

There was recently a new program put in place to have each Division appoint a tech transfer point of contact. Most of these people, however, already have demanding full time jobs, some as heads of sizable research groups. Their role and way of working is just beginning to evolve.

Information Source Contacts / Technical Information Services:

Office of Public Affairs : 708-252-5575 — can provide general information, annual reports, etc.
They publish a biannual “Research Highlights” and a technical magazine called “logos”.

Technology Transfer Opportunities in the National Laboratories

PROPRIETARY
Final Report
Technology Transfer Opportunities in the National Laboratories
Oak Ridge National Laboratory
Oak Ridge, Tennessee
January 1994
Revised September 1994
Prepared for:
Utility Federal Technology Opportunities (UFTO)
By:
Edward Beardsworth
Consultant

This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities

Contents:
page
1. Summary
1 ORNL Organization
3. ORNL Technologies & Programs
10. ORNL Contacts

This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.

Summary
This report details findings about technology and technology transfer opportunities at the Oak Ridge National Laboratory (ORNL) that might be of strategic interest to electric utilities. It is based on two visits to ORNL in Oak Ridge, Tennessee (in November 1993 and March 1994), as part of a project for PSI Energy, which had the additional goal to establish relationships that will enable PSI to monitor developments and gain access on an ongoing basis.

Background
Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, PSI Energy supported this project to become familiar with the content and process of those programs, and to seek out opportunities for collaboration, demonstration or other forms of participation that will further the business objectives of PSI. PSI has agreed to make these results available to the participants in UFTO.

ORNL Organization

Oak Ridge National Laboratory (ORNL) is a “GOCO” lab (government-owned, contractor operated). Martin Marietta Energy Systems Inc., a division of Martin Marietta Corp., is the contractor that manages ORNL and four other facilities, including the Y-12 Plant and the K-25 Site in the town of Oak Ridge, and gaseous diffusion enrichment facilities at Paducah (KY) and Portsmouth (OH). [Added Note: The recently announced merger of Lockheed and Martin Marietta is not anticipated to have any major impact on ORNL, except that over time there may be more joint activity with Idaho National Energy Lab. This is similar to the closer contact with Sandia that developed after Martin Marietta took over the management of that facility.]

Thus ORNL is a separate entity and organization from Y-12 and K-25, though they are all operated by the same management company. There are many overlapping activities, and some ORNL staff have their offices and facilities physically located at the other sites. For example, Y-12 is also the site of a joint program called “Centers for Manufacturing Technology” (Dave Beck is the contact), a manufacturing skills campus available to private industry on a full cost recovery basis. Thus, any interaction with ORNL will also provide a point of entry to the other Oak Ridge facilities.

Similar to other DOE labs, ORNL has a matrix organizational structure, where “divisions” aligned by discipline have the people, and “programs” have the projects and budgets. On some occasions, divisions do get funds and projects of their own. Overall, the matrix system is mature and functions very effectively at ORNL.

Both divisions and programs live in research “ALD’s” or Associate Laboratory Directorates, headed by Assoc. Lab Directors who along with other administrative and support groups report to the Laboratory Director (Alvin Trivelpiece).

ORNL’s four research ALD’s are:
– Physical Sciences & Advanced Materials
– Engineering and Manufacturing (name recently changed from “Nuclear Technologies”)
– Biomedical & Environmental Sciences
– Advanced Energy Systems

There is work in all four ALDs of potential interest to utilities. The point of contact for this study was established through the Energy Efficiency and Renewable Energy Program, which oversees activities involving 11 different research divisions. Contact was also made with the Fossil Energy Materials Program, with a similarly broad scope. Both of these programs are in the Advanced Energy Systems ALD.

ORNL also takes on a program management role nationally on behalf of DOE, for some aspect of a DOE program, e.g. supporting PETC or METC or the DOE program office directly, or in collaboration with other national labs.

Mechanisms to Work with ORNL

There are a variety of mechanisms for working with ORNL. The laboratory often subcontracts work to industry (usually cost-shared), and can also perform industry-funded work (but must demonstrate that it is not competing with other private industry companies).

One of the major mechanisms is the “CRADA” (cooperative research and development agreement), which is analogous to a joint venture between private companies. No money changes hands, but both parties bring something to the table, and get something of benefit from it, most typically intellectual property rights.

ORNL also has a number of “User Facilities” and “Centers” that focus on particular subjects, and make special equipment, facilities and expertise available to outside users, on a fee or collaborative basis.

One other general point: — the lab annually publishes an “Institutional Plan”, which is organized according to which DOE Program Office supports the work, not the lab’s own organizational structure. Thus a “mapping” between the two structures is required to be able to see the work of the groups within the lab. In most instances, divisions and programs also publish annual progress reports, providing detailed though not always current accounts of the work

Specific ORNL Technologies & Programs

Covered in this section:

Energy Efficiency and Renewable Energy Program
• Power Systems Technology Program
• Superconducting Technology Program for Electric Energy Systems
• Electric & Magnetic Fields Bioeffects
• Motors
• Power Electronics Technology Center
• Fuels, Combustion and Propulsion Technology Group
• Efficiency and Renewables
• Biofuels Feedstock
• Bioprocessing R&D Center
• Integrated Resource Planning
• Energy Planning and Evaluations
• Carbon Dioxide Information Analysis Center (CDIAC)
• Center for Global Environmental Studies
• Developing Country Program

Fossil Energy Materials Program
• Energy Efficiency Materials Program

Energy Efficiency and Renewable Energy Program
A.C.(Tony) Schaffhauser, Director, 574-4826. This office manages a wide spectrum of programs involving many functions and groups within ORNL.

• Power Systems Technology Program, James VanCoevering, Manager, 574-4829
OPPORTUNITY
ORNL has been active in T&D research since 1974, and handles all DOE work in T&D. “System 2020 Workshop” (Denver 1990) identified high priorities for T&D (DOE and utilities). ORNL focus is on high capacity transmission and power electronics. A complex organizational framework to coordinate initiatives has very little utility representation except thru EPRI and BPA & WAPA.

High Capacity Transmission Options: Goal is to develop new-construction options that increase power density on a corridor. Work is in areas of High-Phase Order and HVDC.

Real Time Control: They see T&D network as the world’s most complex process system, with trend away from “security by reserves” to “security by control.” Goal is zero reserve capacity — “N-1” criteria are expensive in terms of idle equipment. (Niagara Mohawk is only other utility representation on technical committee for this.)

High Capacity Power Electronics: Goal to reduce converter costs to make DC compete with AC at 150 miles instead of 400 mi.

Power Transients: Geomagnetic Induced currents and EMP/Lightning transients

Equipment Diagnosis: SF6 degradation detection — major CRADA, with work at NIST, Ontario Hydro and ORNL.

Reliability Centered Maintenance of T&D equipment — approach is to understand underlying physical processes, and acquire data on degradation processes. [Alternate approach would emphasize codifying “expert” experience.]

SMES Market Potential & Benefits for Electric Utilities: Extensive array of studies with utilities just getting started in early ’94, to examine various uses for SMES. Five under contract already, and 2 more in negotiation. AD Little did major evaluation of utility benefits for Storage and PLC.
[Anchorage Elec and B&W got $5 mil ARPA grant to design and build a SMES unit!]

• Superconducting Technology Program for Electric Energy Systems
Robert Hawsey, Director, 574-8057

In partnerships with ANL, LANL and industry. Issue quarterly bulletin. ORNL has advisory, study role, and receives 1/4 of the $20 million DOE budget. Doing work on motors, generators, transmission, but not bearings or current limiters. HTSC applications of greatest interest.

Interested particularly in adding inductor/reactors and transformers to the original list of applications of potential use to the utility industry. Also see SMES discussion above.

Looking for vertically integrated teams — “Partnership Initiatives” — 3 @ $2 million each, with a manufacturer, utility and laboratory. OPPORTUNITY

• Electric & Magnetic Fields Bioeffects Paul Gailey, Program Manager 574-0419

ORNL has lead role in coordinating DOE effort–program mgt., conferences, Q/A, publications, etc. on Engineering and Biological Effects. Good relations with EPRI. Also issue RFPs for DOE. Biology research looking for theoretical models, going outside of EMF community to main technical/academic societies (e.g. engineering study of current tomography of the human body).

Staff are urging more attention be given to what it would cost to mitigate EMF, for use in social risk/benefit decisions.

• Motors Ben McConnell, 576-2733

Motors themselves are already very efficient, and only small gains can be made. However, if the entire system (electric motor system — EMS) is taken into account, 30% improvements are possible. The entire system includes the power conditioning (ASD), the motor, mechanical drive/coupling, and the process device (e.g. pump, impeller, fan, etc.). The problem is that these are never looked at as a system, but as separate components. (Even in large companies involved in more than one area, the motor people don’t talk to the drive people don’t talk to the device people).

The “Motor Challenge Showcase” will start in ’94. Awards will be made to 5-6 industry teams, each to consist of a customer, a manufacturer, and a utility. A Notice of Program Interest (NOPI) is due shortly. Voluntary industry/government collaboration to promote efficient EMS; develop tools, protocols, guidelines; national EMS database and information clearinghouse.

• Power Electronics Technology Center William Key 576-0278

Advanced motor development, based on ultra centrifuge program. Axial gap permanent magnet; working with HTSC to see how to use it in motors.
(Note: referred by Ron Graves to Dan Linehan and John Conyer, ETD at K25, program development staff for adv. motors. Also to Y-12 Howard Haynes and Don Casada for Electric Motor Signature Analysis & Condition Assessment — for Reliability Centered Maint. Already successful with valves in nuclear plants.)

Inverters — internal development program for hi effic, hi reliability, low EM interef. 40kW 300VDC for automotive program.

Photonics — also internal effort — on non-contact remote power sensor and strain measurement (EPRI–B. Dooley), fiber optic sensors, Si rubber weight-in-motion.

Flywheels (Dave O’Kain) –applying experience from gas centrifuge program that was canceled in ’85 –high speed rotor in vacuum. High peripheral velocity is key variable. Hold world record. Spin test facility can spin to failure. Program not a solo effort — team with others for system.

Elec Machinery Systems Test Facility
Motor Test Lab (Bob Schilling, 576-7859) Based on work for NRC on life extension and aging of motor operated valves, studying reliability and harmonics of high efficiency motors. For large motors (50-100 hp and higher) harmonics measured back at transmission substation (with Commonwealth Edison).

Diagnostics (Steve McNeany) Remote temperature measurement and Electrical Current Signature Analysis – can see mechanical vibration, etc. by analyzing the current waveform, with exciting implications for assessing motor/systems condition on line.

• Fuels, Combustion and Propulsion Technology Group (Ron Graves) (located at Y-12)

Work for EPRI on FBC; also applied chaos theory.

Piston Engine tests– emissions, advanced materials, alternate fuels; CRADA’s with auto makers.

Full vehicle test–managed Federal Methanol fleet project; detailed measurements, especially effects on lube oil.

Program Mgt. for DOE in Alternate Fuels; Subs with Detroit Diesel, Caterpillar on adv. diesel; Emission reducing additives for diesel fuels (with Cummins and Texaco) — NOx down 40% with expensive custom molecule; natural gas in diesels.

ORNL not involved with large stationary engines, but has work in fuel chemistry relevant to standby generators (fuel stagnation and fire safety). Also Cogen (GT and diesel) for military bases.

Emissions after-treatment — sensors, controls, instrumentation.

• Efficiency and Renewables Dr. George Courville 574-1945, Jeff Christian 574-9338

“Building Technology Center” is a “User Facility”, and has the recently consolidated activities related to buildings. There are major test facilities for heating, air conditioning, refrigeration, insulation and building materials. The also do performance analysis for Program Evaluation projects, and have a strong role in ASHRAE and ASTM standards, tests and procedures committees.

There are several technology developments also:

– Powder Evacuated Panels (PEP) insulates 5 times better than conventional insulation, or >R25 per inch. (It’s similar in structure to a package of vacuum packed coffee.) GE and Corning are vigorously pursuing applications, and ORNL’s role is on process and measurement improvements.
– Gas adsorption A/C — ORNL has basic patents on “triple adsorption”, licensed to Trane.
– Improvement for auto and window A/C–permitted 20% improvement in performance by overcharging the system while avoiding the “slugging” problem that usually results. It’s basically an liquid overfeed system, a separator/accumulator that keeps the liquid refrigerant from entering the compressor.
– High efficiency building block — a new geometry that reduces the front-to-back thermal bridging and amount of mortar that’s needed.
– Handbooks for Builders on building envelope, foundations, etc.

• Biofuels Feedstock Janet Cushman 574-7818; Lynn Wright; Robin Graham 576-7756

ORNL has managed the DOE’s Transportation Program’s work in crops and cropping systems for biofuel for over 14 years. (SERI/NREL handles the conversion technology.) An emphasis on ethanol is now broadened, with additional funding from DOE/EER and EPRI. Initially focused on crop yield research, there is now also work on demonstration and analysis (environmental CO2, economic development benefits, etc.)

Working with utilities on trees, especially interested due to opportunity to co-fire with wood, and “closed CO2 cycle” aspects. Also with ethanol producers and NREL. No plans to use existing forests, but need fuel while waiting for trees to grow. Ultimate objective is agricultural cropping. Doing project with TVA (Bruce Gold) and EPRI on cofiring woodwaste and crop residues, and resource assessment (economics, GIS/network model, etc.). Planting 1000 acre poplar farm in S. Minn., cofunded with EPRI, NSP and Minn. Power.

Species breeding — focus on poplars (hardwood). Best non-wood option is switch-grass–screening/breeding program at Purdue.

DOE/NREL recently released an RFP for feasibility studies of complete systems for biomass power and liquid fuels. (When making alcohol from biomass, 25% of mass is lignin, which goes unused unless it’s burned for power–i.e. power as a by-product–same idea would apply for paper mills.)

Ethanol producers formed a Consortium for Plant Biotechnology at Purdue, to use cellulose waste. (Involves New Energy of Indiana and ADM)

• Bioprocessing R&D Center Charles D. Scott, Director 574-6775
Timothy Scott 574-5962

Applied (not basic) biological research, making basic processes into high production rate systems (as distinct from slow chemical reactions):
– Cellulose –> glucose
– Remove S, N from coal (difficult) and from liquid/gas fuels (more likely)
– Stack gas cleanup with biocatalysts–lab stage; about 3 years to decision on next steps.
– Liquefying coal with enzymes

Bioengineering–unconventional, faster, more efficient. Reactor systems, separation and purification, models for scale up.
Looking for industry participation in segregated waste paper to ethanol project
OPPORTUNITY

• Integrated Resource Planning Eric Hirst 574-6304

Series of studies on relationship between regulation and DSM/IRP. Also an evaluation of “collaboratives”, which refers to programs to involve interest groups and intervenors in utility planning. Also survey of PUCs on DSM incentives.

“Climate Challenge” is new program like EPA’s Green Lights involving DOE and 60 utilities.

• Fuel Cycle Externalities are receiving renewed attention. ORNL has some notable work by Russ Lee in this area, that has gotten the attention of the NCA, among others.

• Energy Planning and Evaluations Marilyn Brown 576-8152
Evaluate the effectiveness of programs from weatherization to tech transfer.

– National Evaluation of DOE Weatherization Program for Low Income Households
Services delivered through local community agencies, and utilities can piggyback to deliver services to low income customers. A number of utilities have worked with the program.
– Economics of Low Income DSM Programs (ongoing with 4 utilities–Con Ed, Duke, CP&L, and Niagara Mohawk, 2 states and DOE): How will Utilities and PUCs assess cost effectiveness, and how to treat government funds?
– New England Audit Program (“NEAT”) is a software package available to agencies, and provides a user-friendly shell around DOE-2 for single family houses.
– Support DOE commercialization efforts, in tracking, data collection and analysis of experience and success rates–have done case studies in building technology and Energy related invention program.

• Carbon Dioxide Information Analysis Center (CDIAC) 574-0390

In the Environ. Sciences Division, CDIAC provides extensive data services and products on CO2 and trace gases in the atmosphere, and their impacts on climate and ecosystems. Numerous reports, periodicals and publications are available.

• Center for Global Environmental Studies Michael P. Farrell, Director 576-7785

This program cuts across the entire lab. Principal strengths include data systems; large scale environment study; scientific measurement and instrumentation (spin offs from defense work). Working with CIA to declassify some data — especially population and energy consumption; Photo Interpretation Center — system to scan old photos to develop land use histories; Energy Policy and Human Systems Analysis — human behavior–cause & effects — technology & population as drivers–model economic incentives.

• Developing Country Program Thomas J. Wilbanks 574-5515

Developing countries experiencing very high growth rates, but face capital constraints for new capacity, e.g. explosive growth in appliances in China and India, putting pressure on power systems. Thus, utilities have to be innovative. Also, as they go to the world financial market, there are new pressures regarding the environment, growth, DSM, conservation, etc. They want U.S. experience to guide them, especially in management and organizational structure.

US utilities can get involved, and not just to make $$:
– Public service philosophy, especially to help stabilize the global environment!!
– Foreign situations offer a laboratory to test things
– Provides interesting careers for utility senior staff–good for morale
– Money available from US and international agencies.
-Can help with economic development back home.

“Joint Implementation” on Climate/Greenhouse gases — producers invest elsewhere to buy abatement credits (e.g. tree planting). TVA is helping fund IRP in China to open it up for Joint Implementation.

He’s working with EPRI/Wash DC office, and AID, World Bank, etc. Since ’82, more than 60 projects in 34 countries. AID setting up a “Sister Utility Program” with USEA.

Fossil Energy Materials Program
Rod Judkins, Director 574-4572. The Fossil Energy Materials Program is manager of the national program in materials development, which also involves 5 other labs and many contractors. They provide support to PETC Clean Coal and METC. They’re involved in bioprocessing and EIS/assessments for Clean Coal projects. In combustion there is work to evaluate fuels, and mild gasification (pyrolysis), and a CRADA with B:&W to study deterministic chaos theory applied to mixing of coal in FBCs.

There is also a User Center for Characterizing Materials.

Gas Clean-up with Ceramic Composite Filters (Dave Stinton 574-4556) They have a long history in CVD for coating nuclear fuel with continuous fiber ceramic composites, and are now doing chemical vapor “Infiltration”. A Nikalon fiber preform is infiltrated with CV Silicon Carbide, to make tougher high temperature materials impervious is breakage by thermal shock. Near term applications include filters for PFBC flyash and char. (Commercially available candle filters aren’t tough enough.) In work funded by METC, 3-M won the bid to commercialize, and is making 5′ candles prototypes, replacing the traditional clay or glass binder with CV Si Carbide, making it very resistant to corrosion. They performed well in tests by Westinghouse. (Not related to EPRI’s candle filter project in the U.K.)

Applications work on alloys, ceramics for corrosion problems: Iron Aluminide alloys have superb resistance to sulphadizing, e.g. in H2S in coal gasification (not the same as sulfates in combustion). Good structurally only to 600°C, but as a cladding to 1100 °C in sulfur environment and to 1300°C in an oxidizing environment.

An application has been developed to create a porous sintered filter metal. Amitech is the licensee for the invention, and makes the powder. In 1987, the Pall Corp. and Amitech entered into an informal collaboration with ORNL, and Pall is making filters from this material, and is replacing its own product on the market. The market is small currently, but since hot gas cleanup technology doesn’t exist–plants are designed more conservatively than may be necessary, particularly in the area of heat recovery. The technology may make 700°C flue gas cleanup possible.
OPPORTUNITY A utility could do the tests needed to go to the next step!

• Energy Efficiency Materials Program
Ron Bradley, Assoc Director, Metals & Ceramics Div. (MC) 574-6094
Michael Karnitz, Manager, Industrial Conservation Program, 574-5150
Philip Sklad, Manager, Adv. Industrial Concepts Materials Program, 574-5069

Metallurgy and Ceramics originally supported the nuclear program, but the scope has been broadened over time. Ron Bradley also is responsible for the Material Research activities in the Energy Efficiency and Renewables Program.

The MC Division has a budget of $60 million, almost all from DOE. It does both basic and applied research. About 1/3 is for energy efficiency, however none in solar PV, wind or geothermal.

Materials for Energy Efficiency: similar to the Iron Aluminide development, Nickel Aluminides came out of work on ordered inter metallic alloys, and have the interesting property that their strength increases with temperature! While they have good high temperature properties and oxidation resistance, they have poor sulphadation resistance. They do have applications in industry, such as heat treatment furnace components, and are being evaluated by Cummins under a license for turbocharger rotors.

Ceramics for automotive Gas Turbine–ORNL has managed the DOE effort for 10 years. Silicon Nitride ceramics have met the performance requirements for GT rotors, and the next issue being addressed is cost, and possible use in IC piston (diesel) and stationary GT for industry and utility use. (Allied Signal is already using ceramics for vanes in auxiliary power units for aircraft.)

A new program at DOE has been set up mid ’93 jointly by Fossil and Energy Efficiency, to develop advanced turbine systems, with efficiencies increased to 60% for large machines and into the high 40’s for smaller ones. (GE’s goal for 1998 is a new 250 MW turbine operating at 2550˚ C and 60% efficiency.) There are contracts in place with Allison, GE, Westinghouse and Solar Turbine, and possibly one with Siemens. ORNL’s role is materials support: coatings (silicon nitride), alloy development, machine characterization, ceramics for vanes, shrouds and uncooled blades.

A utility could become involved in possible application to GT/CC. There hasn’t been much interaction with EPRI, though Wate Bakker was testing the Iron Aluminide at Lockheed.

Corrosion in scrubber linings and coal powder abrasion are key issues for coal utilities.
ORNL had done a big review on corrosion 15 years ago, and couldn’t offer much at the time. Now, ceramic work tends to be aimed in different direction. Intermetallics a possibility–just learning how to put FeAl coatings down on steel, and NiAl would be ideal, but how to install? Aluminides being developed for gasifiers perform very well in high temperature sulfur environments–some common problems in DOE incinerator work.

Inorganic membrane technology from the isotope separation work is just emerging from secrecy. It has been licensed for some commercial applications, and there could be some intriguing possibilities of using it for hot gas separation in power plants.

Key Contacts:
general phone # Martin Marietta Energy Systems 615-576-5454
Oak Ridge National Labs

Primary UFTO Contact:
A.C.(Tony) Schaffhauser, Director, Energy Efficiency and Renewable Energy Program 574-4826

Office of Technology Transfer — part of Martin Marietta Energy Systems, overseeing technology transfer for all the facilities they manage. Mission is to facilitate contacts and help with business arrangements. Want long term strategic partnerships/teaming with industry, not just companies buying lab technology. Martin Marietta’s winning bid to manage ORNL in ’84 had strong tech transfer component. “Nothing is not possible.” “Never say no, say how” There’s always a way to make something work. Always looking for new ideas.

William R Martin, Vice President & Director, Technology Transfer 576-8369

Ralph Donnelly was named Deputy Director in March ’94

Public Relations

Martin Marietta Energy Systems, Carol Grametbauer 574-1640, Ms. Eddie Stout, Assistant

ORNL Public Affairs Dept., 574-4160