PROPRIETARY
Final Report
Technology Transfer Opportunities in the National Laboratories
Pacific Northwest Laboratory
Richland, WA
August 1995
Prepared for:
Utility Federal Technology Opportunities (UFTO)
By:
Edward Beardsworth
Consultant
This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities
Contents:
1. Summary
2 PNL Organization
3. PNL Technologies & Programs
14. PNL Contacts
This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.
Summary
This report details findings about technology and technology transfer opportunities at the Pacific Northwest Laboratory (PNL)that might be of strategic interest to electric utilities. It is based on a visit to PNL in March 1995, as part of the UFTO multiclient project, and on extensive contacts with PNL to track the major changes there between April and August.
Background
Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, the UFTO program has been established as a multi-client study of the opportunities thus afforded electric utilities.
PNL Overview
The Richland “Tri-Cities” area is home to a number of reactor and weapons materials production facilities, the first of which was the Hanford Site, established in 1943 as part of the Manhattan project. The Pacific Northwest Laboratory (PNL) is a separate multipurpose federal laboratory operated for the DOE by the Battelle Memorial Institute (BMI). Battelle, founded in the 1920’s as a not-for profit, also operates its own laboratory at its headquarters in Columbus OH. BMI took over the management of PNL as a “GOCO” (government owned contractor operated) in 1965. PNL has over 4000 people and a budget of $500 million/year, although downsizing and budget cuts are underway.
PNL’s GOCO arrangement is unique in having two kinds of contracts with DOE. One, called “1830”, is just like other DOE labs, with the usual direct funded work for DOE, work for others, CRADAs, licensing etc. The second type of contract, called “1831”, enables PNL to perform strictly commercial proprietary work for private industry, paying a use fee to DOE for the use of the facilities and overhead. 1831 programs comprise less than 10% of the total activity at PNL, and involve slightly higher rates together with the better business terms for outside clients.
Commercialization is strongly encouraged at PNL, as is multi disciplinary harvesting and reapplication of results and technology from across all areas of the lab, including “black” programs.
Several years ago, PNL made a specific long term commitment to energy, investing its own lab-directed funds (LDRD) and Battelle’s IR&D in such areas as EMF mitigation and Real Time Control of Power Systems. The primary focus has moved distinctly away from generation, and towards T&D and end-use, with continuing strong emphasis on environmental impacts and restoration and on planning and analysis.
PNL’s core competencies relevant to energy include:
Energy Systems Research: Power Systems, distributed utilities, automated diagnostics
Process Technology: Polymer coatings, reaction engineering, and process design tools
Integrated Environmental Assessment: EMF Effects, Global Modeling, Oil & Gas Cleanup.
PNL’s approach to the utility industry, which it has specifically identified as a major program direction, is to support enhanced asset utilization in the near term while preparing a leadership role in the “utility of the future”, involving real time control, distributed utility, new products, and risk/strategic environmental management.
PNL’s Commercial and Industrial efforts already have a long history with the gas industry (GRI and gas/combination utilities), working on pipelines, appliances, etc. and providing product development and commercialization support, problem solving, life/prediction/failure mode analysis, efficient repair technology, and safety and inspection technology.
PNL Organization
PNL has just completed (July 1995) a major reorganization and downsizing (with the help of McKinsey), eliminating nearly 2/3 of the upper management, and going to more of a line organization. (The “Technical Centers,” matrixed with “Business Directorates,” are no longer.) In the new order of things, “lines of business” are the major focus, drawing on personnel and capabilities across the lab, to address their particular sectors.
The technical Divisions are: Environmental and Energy Sciences, Environmental Technology, Energy, Health, National Security, and Emerging Technologies. These divisions each have a number of departments. The names of both divisions and departments are in many cases not a good indication of what goes on in them, so the best strategy for an outsider is to rely on a personal point of contact to reach the personnel and resources that are appropriate to a given topic.
PNL is strengthening its already substantial commitment (including internally funded development projects) to expanding the commercial side of the business, and seeks increased contact with private industry. The Energy Division might better be called the “Commercial and Industrial Division”. Merwin Brown, formerly of PG&E, now heads the Energy Technology Department and Line of Business, which indicates PNL’s resolve to serve the utility industry. They of course will draw on people and talents across the entire lab to meet the needs of utility clients.
PNL’s Utility Strategy
PNL and its parent, Battelle Memorial Institute, have provided significant R&D contributions to the utility industry over the past several decades. BMI is the largest contractor to GRI, and PNL alone currently serves over 30 utility clients with a range of products and services. In addition to utility support, PNL provides support to DOE’s Office of Utility Programs. PNL’s energy strategy has identified the deregulation sweeping the utility industry as a key driver for technology needs over the next several decades. In response, PNL has increased its emphasis on the needs of the utility industry. PNL’s utility industry has two primary foci:
1. Help increase asset utilization in gas and electric utilities, and
2. Provide technology leadership in distributed energy systems.
PNL’s offerings for utilities include:
• Advanced power systems, transmission and distribution technologies and services
• Operations and Maintenance technologies and services
• Technology development and competitive analysis for new energy products and services
• Environmental Management
• Organizational Effectiveness assistance
[UFTO’s contact is Carl Imhoff, who reports to Merwin Brown.]
PNL Technologies & Programs
Covered in this report:
Page
- Decision Support for Plant Operation & Maintenance (DSOM) 4
- Process Science & Engineering — Electrochemical Processes 5
- Power Systems 6
- Federal Emergency Management Information System (FEMIS) 8
- Building Energy Standards Program 8
- Sensors 9
- Coatings and Thin Films 10
- Planning & Analysis 11
- Strategic Environmental Management 12
- Environmental Technologies 12
- Waste Fate & Transport 12
- Fisheries and Water Resources 13
- Operational Effectiveness 13
• Decision Support for Plant Operation & Maintenance (DSOM)
Principal Investigators: Don Jarrell 509-372-4096
Dick Meador 509-372-4098
PNL has fully developed this AI software system that provides on-line engineering expertise to assist operators and maintenance personnel. It uses a proven root-cause analysis methodology, RCM techniques, plant aging experience and advanced instrumentation technology, all in an easy to use GUI package.
The first major application, in use at two military bases for theircentral heating plants, is saving $ millions in the first year alone. (The Marine Corp had asked them to help with aging, poorly performing plants, based on PNL’s earlier work on root cause analysis for the military.)
A second application, already developed, is a Pump Motor Diagnostic Model, that provides operators (not engineers) with diagnostics that recognize stresses early, before failure. It uses fuzzy logic and neural net analysis of existing sensor data.
The capabilities appear to go well beyond anything else that is commercially offered, providing a far more sophisticated and complete solution.
A brochure on DSOM (pronounced “dee som”) is available from PNL:
- A new service business opportunity for utilities — putting this system in at commercial and industrial central heating facilities (a typical site requires several man months to set up). It’s all ready to go.
The capability could be applied to any process, utility or customer’s. PNL could help develop applications.
Applicable to utility power plant operations.
Perhaps a good place to start a T&D RCM development.
• Process Science & Engineering
Electrochemical Processes Ed Baker (Principal Investigator) 509-376-1494
Waste Acid Recovery
Based on the development of a polymer heat exchanger that can withstand 200 ˚C, this is a commercially available system that recovers process acids, and separates metals from waste streams. It is already in use in a few places, and is very broadly applicable, e.g. to galvinizers, platers, and innumerable other industrial processes. It would help keep a customer competitive, by reducing waste disposal costs.
The vendor is Viatec Recovery Systems, in Hastings MI and Richland WA. They are small, and would probably be interested in some kind of teaming to give them access to markets and capital.
Alkox
Alkane oxidation for partial conversion of methane to methanol. Catalyst is regenerated electrochemically. Could help fill in the summer slump for natural gas demand, making oxygenate for gasoline. Also use at oil wellhead, to capture flared gas. Needs $300-500K for proof of concept. (pat. pend.)
Near Critical Water Oxidation
(TEES, for thermochemical environment and energy system) converts organics to methane and CO2 with high pressure, high temperature water–both energy production and cleanup! Applicable to aqueous waste streams with organics, e.g. food processors could lower costs and even do some cogeneration. Sludges and slurries OK. There’s a small licensee in Southern California.
Supercritical CO2 cleaning —
replaces solvents (e.g. CFCs, carbon tet, trichlor, etc.) The trick is to recover energy during pressurization/depressurization. A DOE funded demo is going in at a foundry in Portland, OR, and a transportable demonstration unit for parts cleaning is on the road, traveling to trade shows. No licensee as yet.
Catalysts by design
For example, membranes reactor to generate hydrogen from methane, avoiding the need for a reformer — important implications for PEM fuel cells.
• Power Systems
Landis Kannberg, Program Manager, 509-375-3919
John DeSteese, Sr. Research Engineer, 509-375-2057
John Hauer, Sr. Program Manager, 509-375-4340
PNL has a long history in RD&D for power systems. They had an active role in power systems since the 70’s, working closely with EPRI and with BPA. Earlier work included studies like estimating the savings from improved voltage regulation, distribution system modernization, evaporative cooling of underground transmission, and future trend assessment for DOE.
More recently, they have been involved in superconductor applications, the distributed utility concept, advanced computation particularly for transmission system dynamic analysis, and a range of special studies, including one on the need for power in the former soviet union.
Superconducting Transformer Evaluation with HTSCs … takes the view that discrete devices like transformers are a better application of superconductors than transmission lines. They found that HTSC transformers would be viable even with a conventional HTSC stability design, in the 30-1000 MVA range. ABB will build one in Europe next year. A likely early justification would be for use as a transportable spare.
PNL suggests an interesting first step: start by cooling an existing conventional Cu transformer with liquid nitrogen, gaining a 2x increase in power density. The next step is to redesign.
(A preprint is available from DeSteese, titled “High Temperature Superconducting Transformer Evaluation”).
Distributed Utility (DU) … PNL was part of the group (with EPRI, NREL, and PG&E) that started an informal collaboration to study DU. PNL’s work was funded by internal “lab directed R&D” (LDRD) money. One of the staff (Kannberg) went on loan to PG&E for a time, to manage the overall effort. Their particular interest is on the effects that implementing a lot of DU resources would have on stability and performance of the transmission system.
PNL did a DU Feeder Analysis for PG&E, using a “synthetic” load data set for each feeder. Based on load duration curves for a given feeder, the estimated the amount of distribution asset deferral possible from adding DU resources to trim the peak load, until load growth becomes overwhelming. This effort included the development of a short term load forecast using load shapes and cluster analysis to generate typical customer profiles. This was used to estimate the potential for DU and DSM and the value of retail distribution wheeling.
Contact Rob Pratt, 509-375-3648
Benefit Cost Analysis of Storage is pursued “technology-blind”, i.e. without a preference for any particular means for storage. A series of studies have focused on SMES. One evaluated SMES in a number of system-specific scenarios for BPA. (J DeSteese, et.al., Applied Superconductivity, Vol 1, # 7-9, pp. 1425, 1993) Others looked at wind integration, and other utility systems. They found that some earlier analyses tended to underestimate SMES benefits because multiple benefits were not evaluated.
Real-Time Power Systems Control (RTPSC) is a big issue for the industry, especially on the question of whether utilities will be willing to share the data needed. A control based strategy will need an extensive information infrastructure, and it needs a fall-back capability, perhaps including repair SWAT teams. There must be complete buy-in to the whole idea, and the conversion may take as much as 2-3 decades.
There appear to be two competing scenarios–one holding that DU will obviate the need for more transmission capacity, and FACTs, which has its own large information needs. PNL prepared a White Paper (Version 1.0 dated March 3, 1994). It outlines a phased strategy for the development and deployment of RTPSC. (It is available from the contacts listed above. A revised version is in progress.)
Workshops held in recent years have reached a consensus on the R&D needs, which include the need for: gaining a better understanding of optimal power system operation, a new generation of on-line sensing, advanced technology, local adaptive computer control, and systems wide engineering research into new algorithms and modeling approaches.
System Monitoring and Control … While some utilities have remote system monitors, there isn’t a comprehensive means to use this data in real time for system operation and control. Everyone from expansion planners to system operators needs measurement-based information.
PNL has developed a Portable Power System Monitoring Unit (Interactive Measurement & Analysis Workstation) which operates over a wide area network. It provides flexible trigger logic and GPS synchronized/phasor measurements, in an integrated open statistical and analytic environment. The workstation also provides dynamic analysis and design.
Visualization …. In comparing model-based vs. data based analysis, it’s been noted that the models tend to be more pessimistic about system behavior when problems occur. Operators need to be able to visualize model outputs, so they can understand, interpret and compare. PNL has applied commercially available visualization packages to represent power system simulation results. As one example, a graphics tool has been used to display output from the Extended Transient Midterm Stability package (ETMSP) from EPRI. This is seen as a first step towards a fully graphic based interface where one environment provides data entry, simulation control and analysis, using the models no longer require separate procedural steps.
Power Conversion … PNL has built and is testing a 5 kW power converter using Pulse Amplitude Synthesis Control. It promises better integration of a variety of DC generators and storage sources with diverse characteristics, making them appear as one integrated resource on the grid. (Visualize a transformer with multiple primaries and a single secondary.) The principal advantage is that the power converter is not dependent on the operation of each of the DC supplies.
They are in the process of lining up a CRADA partnership with a wind power manufacturer who only wants to license it, so other interested parties would be welcome.
• Federal Emergency Management Information System (FEMIS)
Tom Coonelly, Computer Sciences Department, 509-375-6480
FEMIS is an automated decision support system which integrates all phases of emergency management. It was developed for the U.S. Army to deal with chemical weapons, but it is a generic set of tools that can be adapted to any emergency response situation, providing planning, coordination, response, training and exercise support for emergency managers. FEMIS enables the integration and use of real-time data from outside sources (e.g. weather monitors), which can be displayed in geographical and/or tabular form. It tracks resources, task lists, and organizations; it provides event logs; it reminds the user about overdue tasks; and it reports on the status of wide variety of items. FEMIS uses commercial software in a distributed system architecture.
It is a general, “vanilla” capability to bring in information from over a large geographical area and respond to it. One important element–it can provide systematic coordination of different agencies and jurisdictions, i.e. company, local, county, state and federal.
Possibilities for utilities–a new breed of nuclear plant emergency response tools, application to transmission grid management (operations and emergency planning, e.g. storms). Discussions are underway with several potential commercializers, and a helpful overview brochure is available.
• Building Energy Standards Program (BESP)
Jeffery A. Johnson, Program Manager, 509-375-4459
Building Energy Codes Hotline: 1-800-270-2633 answers questions from state and local code officials, builders and others.
BESP did a survey in 1994 of utilities, to find out what strategies are currently being used to promote energy-efficient building design and construction (sponsored by the DOE Office of Codes and Standards). The complete report is available: PNL-9976, “Lessons Learned from New Construction Utility DSM Programs and Their Implications for Implementing Building Energy Codes”
The Advanced Energy Design and Operation Technologies (AEDOT) project focuses on developing advanced, computer based building-energy design tools, incorporating new energy-efficiency expertise into systems architects and engineers use to design and operate buildings. A CRADA is underway with the University of Oregon and Softdesk, Inc. to integrate energy analysis into a CAD tool. The product, “Softdesk Energy”, will be distributed to all users of AutoCAD with Softdesk–over 100,000 users. It automatically transfers building geometry data to the energy analysis software, enabling the user to obtain energy load estimates at any time, using the ASHRAE Simplified Energy Analysis Method for heating and cooling anywhere in the U.S.
Contact: Michael Brambley, AEDOT Program Manager, 509-375-6875.
BESP publishes a newsletter “Building Systems Update” Contact C.J. Belcher PNL, Box 999, K5-02, Richland WA 99352, FAX 509-375-3614
Also, a new brochure “Enhancing Today’s Buildings, Inventing Tomorrow’s Buildings” will appear next month giving a detailed overview of the work in codes, standards, compliance modeling, building (life-cycle!) energy analysis, metering, data-logging, retrofit analysis, building operations and maintenance assessments, etc..
• Sensors John Hartman, Leader, Electro-Optic Systems Group, 509-375-2771
There is no specifically organized function to manage sensor development at PNL. Instead, there are a large number of informally linked “islands” of expertise across the lab’s organization. John Hartman offers to help pull together the appropriate people to address any particular need or application.
It’s also important to note that sensors are only one of a long list of technical areas that comprise PNL’s “Automation and Measurement Sciences Department”, including robotics, imaging, NDE, instrumentation, and applied mechanics.
PNL views sensors in the context of the entire process and environment they operate in. Starting with a long list of basic sensing mechanisms, a cost-effective and practical device must be developed, together with the associated components to form a sensor system. The sensor system in turn must fit functionally into the larger system of which it is a part.
Thus, the development of a sensor system must draw on a wide range of talents.
Mechanisms include electrochemical, electromagnetic, chemical interaction, mechanical, optical, radiological interaction, electromechanical, and thermoelectric. Practical sensors measure the presence, amount or concentration of chemical species or radiation, mechanical strain, moisture, crack growth, acoustics, fluid flow properties, temperature, em fields, or corrosion.Implementation must take into account materials, signal characteristics, response rates, fabrication, stability, on-board signal handling, packaging, power requirements, calibration, etc. Finally, the balance of system must deal with how the sensor data is transferred and used, in terms of the process hardware, software and human interaction.
Some examples:
Fiber-optic Chemical sensors monitor ground water contamination, using emission, absorption or color-change phenomena.
Piezoelectric Chemical sensors detect small quantities of a chemical species with selective coatings.
Acoustic and Ultra acoustic sensors are applied in diverse areas such as sonar, materials inspection, and near-surface geophysical exploration. Measuring the time of flight of a sound pulse, PNL developed a system to measure the internal temperature of steel at temperatures up to 2000 ˚F. It is now is use in a steel plant’s continuous caster.
Optical sensors have applications ranging from power-beaming in space, to high speed production inspection, to remote temperature measurement.
[For further inquiry: H2 detection is very important for Hanford, and a group at PNL probably has done work in this area that might prove useful for nuclear power plants.]
• Coatings and Thin Films
John Affinito, Staff Scientist, Materials Sciences Dept. 509-375-6942
PNL has developed new processes for rapid vacuum deposition of multilayer polymer and metal films, and is pursuing applications in Li batteries, solar thermal reflector films, magnetic shielding, electrochromic films, supercapacitors, and non-linear optical devices. They achieve higher quality and production rates hundreds of times higher than other methods.
In the Polymer Multi-Layer (PML), monomer fluids are vacuum flash evaporated on the substrate. The fluid condenses as a liquid film and then is radiation cross linked to form a solid polymer film. In a second process, called Liquid Multi-Layer (LML), the liquid is directly coated onto the substrate by extrusion, rollers, spraying or other means, and then is radiation cross linked. Both of these processes are novel, fast, and compatible with simultaneous high rate in-line deposition of other layers by conventional vacuum coating processes (evaporation , sputtering, or plasma enhanced chemical vapor). Several licenses have already been granted.
The supercapacitor consists of thousands of thin alternating layers of polymer and aluminum, and can go to very high voltage. The PML/LML processes inherently eliminate pinholes and other micro defects that can have a significant effect on the properties of the film. There is a licensee — AVX in South Carolina.
The solar reflector film has higher reflectivity and is cheaper than other alternatives, using acrylic/silver/acrylic layers on a polyester substrate.
Optical coatings have been done on elements 2 meters in diameter.
Electrochromic heat mirror film can become cost effective due to the high rate of production.
Micro Heat Exchanger/Heat Pump Kevin Drost, 509-375-2017
PNL is developing a miniaturized vapor-compression cycle heat pump smaller than a dime that could be fabricated by the hundreds in thin layers on a single sheet. Such sheets could be incorporated into walls of buildings, replacing conventional HVAC.
They’ve had success with the evaporator and condenser components, attaining heat transfer rates of 100 watts/cm2. The compressor is more of a challenge. Work is proceeding on two fronts, one a chemical absorption cycle, driven by heat, and the other a miniature electromechanical pump, which is showing earlier promise. Without the compressor, the evaporator and condenser could be configured as a thermo siphon for cooling electronics.
This work is definitely in the “potentially revolutionary” category, though actual commercial applications are years away. Possible uses: Controlling chemical processing very precisely, which for example could make it possible to make a very high performance reformer for use with fuel cells or at the wellhead. Another application: cooling for protective clothing for use in hazardous environments.
• Planning & Analysis Ron Nesse, Sr. Program Manager, 509-376-4217
Until the most recent reorganization (7/95), the Technology Planning & Analysis Center (TPAC) was a part of Battelle matrixed to PNL, with some staff located in Richland and a group in Seattle. As of this writing, the designation TPAC is no longer operative. Many of the people have been assigned to the new Energy Division and some to the Environment Division.
The focus is management of technology, as distinct from technology itself, supporting DOD and DOE in policy, system models, technology assessment, organization design, human factors and legal and regulatory analysis. (Battelle Columbus has a separate commercial consulting practice that does “Technology Management”. Due to common interests, there’s a fair amount of informal collaboration, but no direct reporting relationship.)
Organizational Consulting for the Utility Industry
Jon Olson, Assoc. Center Manager, TPAC (Seattle), 206-528-3200
The Seattle group is focusing more on private industry than do the people in Columbus, and has specifically targeted the utility industry, manufacturing, and biotech. Noting the dramatic changes, new pressures and new business options utilities are facing, they offer services in organizational effectiveness, process redesign, implementation, and leadership training. In addition to on-site consulting and training, they offer training courses and seminars. The group also does Human Factors and Social Research Support of the Nuclear Industry — safety analyses, plant aging, and procedures design for nuclear utilities here and abroad.
Management Analysis Program (MAP) Linda Fassbender, Project Manager, 509-372-4351
MAP has been instrumental in the ongoing reorganization and strategic planning process for the Office of Energy Management in the DOE Office of Utility Technology. MAP facilitated a stakeholder meeting (4/94), provided issue background analyses, and prepared a Strategic Plan document. The Issue papers offered a succinct analysis of economic, environmental, regulatory, institutional and technological trends and issues in the energy industry for Hydrogen, Electricity, Thermal Energy, and Natural Gas. A second stakeholder meeting was planned for mid 1995, however it has been postponed pending the outcome of higher level DOE reorganization and budgetary uncertainties. DOE and PNL want a far greater participation by the utility industry in these deliberations in the future.
Facility Energy Decision Screening (FEDS) is a comprehensive approach to facility energy management developed for DOE and DOD. The software is fuel and technology independent, and optimizes life-cycle cost/savings considering all interactions, including utility rebates. Used at many sites and facilities in conjunction with the Federal Energy Management Program (FEMP) [see the UFTO NREL report], it has shown that modernization investments of 1-2 times annual energy costs can effectively provide lower costs and increased reliability. Training is available.
Global Change Policy Analysis Tools — for EPRI, EPA, DOE, and others. PNL is the heart of a world-wide “virtual ” center on integrated assessment of climate change issues. Perform policy analysis, technology analysis and social science research. Second generation model integrates emissions carbon cycle, climate modeling, ecosystem response, oceans, and human dimensions.
• Strategic Environmental Management
“Life Cycle Assessment” is the new buzzword for analysis of all aspects of a process or technology –cradle-to-grave, overall infrastructure, all the way up and down stream.. Internationally, the ISO 14000 movement (see below) is gathering momentum, and this is in much the same spirit.
DOE, DOD and EPA are sponsoring the Life Cycle Computer Aided Data Project, which includes separate groups for each of a number of various industries. The idea is to create a generic modeling system that more detailed individual process models can fit into.
Contact is Ken Humphreys, 509-372-4279
Battelle Labs (contract manager of PNL) offers consulting inStrategic Environmental Management, which helps companies get beyond the reactive mode and into a proactive “competitive-advantage-mode” on managing their environmental issues.
They and PNL have an initiative to put together the “Industrial Consortium for Environmental Standards, Science and Technology” (ICES). This is a novel approach to creating networks of already existing groups to be a part of the international ISO 14000 efforts. [If you’re familiar with ISO 9000 — the European total quality program that the US just waited to get hit by, this is the environmental analog, being vigorously pursued in 24 countrieswithout government involvement! There is an ad hoc network of US participants, and ICES is a way to get linked into it.] Contact is Gary Morgan. 509-375-2373
• Environmental Technologies Jim Hartley, 509-372-4428
PNL has an extensive program in technology for managing wastes and performing remediation, and in analytical risk-based decision support tools, such as the Remedial Action Assessment System (RAAS), Remedial Options (a database available commercially from Battelle), Multi-media Environmental Pollutant Assessment System (MEPAS — prioritizes risk).
As one example, the SAFER code for site characterization was developed at PNL, and CH2M Hill uses it commercially. PNL’s tools have credibility, and DOD buy-in, for evaluating remediation alternatives. They provide support to DOE’s cleanup efforts in the form of products and services. They also do restoration and cleanup work for almost all government sites, usually partnering with vendors. Key Battelle technologies for remediation include:
Soil: Vitrification*, soil washing , bioventing, chemical stabilization, insitu corona, six phase heating**
Water: Chemical barriers, Bio barriers, Extraction/Injection network, electrochemical oxidation
*Terra-Vit is a versatile low cost waste vitrification melter can transform waste into products
**ERACE heats the soil electrically to free less volatile contaminants.
Fate & Transport Management of Electric Utility Wastes
Dhanpat Rai, PI, and Andy Felmy, Group Manager, 509-372-6296 (?)
PNL has performed many projects for EPRI for over 12 years in geohydrochemical analysis, e.g. for coal ash leachates and other utility waste streams. Their expertise includes laboratory and field studies on leaching and modeling (FASTCHEM, FOWL, CHROMAT) etc. The group has published widely — a list of publications is available.
• Fisheries and Water Resources
Marshal Richmond, Sr. Research Engineer, 509-372-6241
Duane Neitzel, Staff Scientist, Aquatic Ecology Group, 509-376-0602
Part of the Earth and Environmental Sciences Center, which encompasses Hydrologic Processes, Marine & Environmental Chemistry, Ocean Processes, and Marine Ecological Processes. Research Facilities include Aerosol Wind Tunnel, Arid Land Ecology Reserve, Geochemistry Lab, Geoscience Visualization Lab, Subsurface Environmental Research Facility, Fish Hatchery and Wet Lab, Remote Sensing, Marine Sciences Lab, Airborne Laboratory
Fisheries: Hatchery and Wet Lab provide controlled conditions, making possible precise determination of impacts on fish populations from such phenomena as O2 deprivation.
River Simulation: system of models that simulate flow hydraulics (flood wave), non uniform sediment transport, contaminant transport. Can handle branched and looped channel systems, operations of dams and reservoirs, heat transport and transfer, and river bed accumulation of sediment and contaminants. It features long term multi year simulation and system operation simulation.
Watershed Modeling: detailed integrated representation of watershed processes. Includes two layer canopy model for evapotranspiration, energy balance for snow accumulation and melt, a two-layer rooting zone model and a saturated subsurface flow model. The landscape is divided into grid cells on Digital Elevation Model data nodes, used to model absorbed radiation, precipitation, air temperature, and down-slope water movement. When linked to a regional climate model, it can generate snow pack, soil moisture and stream flow information that can be used to manage water resources.
• Operational Effectiveness
The Operational Effectiveness Department works for DOE and other governmental clients and private industry on policy and regulatory management, operational assessments and training and evaluation.
Operations Technology Group — testing support to NRC Operator Licensing, direct PNL internal operations assessment, support DOE re operations. Reactor safety evaluation, individual plant evaluations.
Safety & Health Technology Group — develop OSH policy, accident investigation, OSH compliance inspections, training, decontamination and decommissioning support
Safeguards and Security Group — Domestic and international safeguards, protection programs, information security, physical security and protective force support, multimedia training
PNL Contacts
General phone # 509-375-2121
Mailing Address:
Pacific Northwest Laboratories
Battelle Boulevard
P.O. Box 999
Richland WA 99352
The primary contacts for UFTO are:
Carl Imhoff 509-375-4328 ch_imhoff@pnl.gov
Energy Programs Manager
Merwin Brown 509-372-6323 ml_brown@pnl.gov
Director, Energy Technologies Dept.
Information Source Contacts
Katie Larson 509-375-3698 kj_larson@pnl.gov
Energy Division Communications
Media Relations: Jerry Holloway 509-375-2007