Posts

CERTS Draft White Papers – Grid of the Future

Consortium for Electric Reliability Technology Solutions (CERTS)
Grid of the Future

White Papers — August 30, 1999

Prepared for the:
Transmission Reliability Program
Office of Power Technologies
Energy Efficiency and Renewable Energy, DOE

Attached are the six DRAFT white papers prepared for the CERTS program by the various participants (labs and others), which have been made available to UFTO for review and comment. These were presented at an invitational workshop last Friday Sept. 17. Apparently Hurricane Floyd dampened the attendance but not the enthusiasm.

Plans are to close the written comment period at the end of the month, finalize the white papers, and then use them to develop a multi-year research plan for DOE.

Comments should be directed to:
Joe Eto, LBNL, 510-486-7284, JHEto@lbl.gov

(The six papers are together in a single zipped folder/directory. If you have trouble downloading or unzipping, I can supply them as word documents instead–total 2 MB)

—————–
1. scenario300899.doc

The Federal Role in Electric System Reliability RD&D During a Time of Industry Transition: An Application of Scenario Analysis; Joseph Eto, LBNL

—————–
2. integdr030999.doc

Interconnection and Controls for Reliable, Large Scale Integration of Distributed Energy Resources; Vikram Budhraja, Carlos Martinez, Jim Dyer, Mohan Kondragunta, Edison Technology Solutions

—————–
3. rcntevnt010999.doc

Review of Recent Reliability Issues and System Events;
John F. Hauer, Jeff E. Dagle, PNNL

—————–
4. bulkpowr070999.doc

Review of the Structure of Bulk Power Markets;
Brendan J. Kirby and John D. Kueck, ORNL

—————–
5. realtime300899.doc

Real-Time Security Monitoring and Control of Power Systems; G. Gross (UIUC), A. Bose (WSU), C. DeMarco (UWM), M. Pai (UIUC), J. Thorp (Cornell U) and P. Varaiya (UCB) PSERC

—————–
6. uncertai010999.doc

Accommodating Uncertainty in Planning and Operations;
M. Ivey, A. Akhil, D. Robinson, J. Stamp, K. Stamber, Sandia, K. Chu, PNNL

—————–

^^^^^^^^^^^^^^^^
(Excerpt from:
UFTO Note – CERTS-New DOE Prog in Elec. Reliability, 01 Mar 1999)

FY 99 activities for DOE include work in five areas, the first of
which is:

“Grid of the Future”

The first year of a two year planning study to identify emerging gaps in reliability technology R&D. In the first year, CERTS will lay the groundwork for the development of a federal R&D roadmap by preparing six white papers, which will be the basis for industry-wide stakeholder workshops on:

(1) alternative scenarios for the future of the electric power system, including a detailed articulation of the technological assumptions underlying each of these futures;

(2) assessment of the technology and control R&D needs for widespread integration of distributed resources;

(3) recent reliability issues review, including in-depth analysis of technological and institutional aspects of recent reliability events (e.g., summer 1996 WSCC events; winter 1997 northeast ice storms; winter 1998 San Francisco outage, etc.);

(4) review and assessment of the current structure of U.S. bulk power markets and provision of reliability services (including 1998 price spikes in mid-west and west, and absence of meaningful opportunities for demand response);

(5) assessment of the technology and control R&D needs for real time system control;

(6) assessment of the treatment of uncertainty in planning and operational models.

LBNL Building Technology

(One of a series of notes detailing results of recent visits to
Lawrence Berkeley National Labs – LBNL)
————————————————————–

Building Technology Dept. http://eetd.lbl.gov/BT.html

Commercial Building Systems, Simulation, Windows & Daylighting, Lighting, and Applications
LBNL has one of the largest US building RD&D activities; active since 1976 in this field, approx. $18M per year in funding currently; with about $12M from DOE and remainder from other sources, addressing most major aspects of building energy use, including hardware, systems, software, indoor environmental issues.
http://eetd.lbl.gov/BT.html
Stephen Selkowitz, Dept. Head, 510-486-5064 seselkowitz@lbl.gov

~~~~~~~~~~~~

Diagnostics for Building Operation and Commissioning
Commercial buildings alone consume about 15% of all energy at a cost of $85 billion annually. Half of this consumption is wasted, compared to what is cost-effectively achievable. To realize these savings requires a careful examination of the process by which buildings are designed, built, commissioned, and operated, using a life-cycle approach.

A multi-year project is underway to develop and apply technology to improve building operation and maintenance. In a collaborative effort among researchers, building owners, utilities and private industry, an interdisciplinary team has been gathered to:
– Assess the current state of performance technology
– Develop an appropriate information gathering and diagnosis capability
– Test this new diagnostic system in real buildings

~~~~~~~~~~~~

Information Monitoring and Diagnostic System (IMDS)
160 Sansome, San Francisco

The first IMDS has been installed and is now operating in an 18 story 100,000 sq ft, class A, San Francisco office building, built in 1964.

The IMDS includes 56 sensors, 34 calculated fields (for a total of 90 monitored data points), computer-based communications, data archival and retrieval capabilities, diagnostic information processing, data visualization, and other components that meet the needs expressed by building owners and property management companies. Existing proven hardware and systems were used, and the focus is on obtaining detailed accurate technical data (e.g. sufficient for calculations for a performance contract). Note this is a passive system, performing measurements only, and not control of equipment. A detailed specification is to be published.

This system implements a top-down approach, with diagnostic and information visualization algorithms, at three levels.
– Level I diagnoses whole-building performance at the aggregate level,
comparing to other buildings with similar energy services.
– Level II examines major end-use systems, and
– Level III focuses on major subsystems.

Savings opportunities of 10% were identified in the first four months. Life cycle cost issues have come into play, for example, improper rapid cycling of equipment. The active participation of the building’s innovative owner and operators should help publicize the effort and influence others in the industry. More recent findings suggest that the IMDS has proven extremely useful to the on-site building operators, helping them to improve control of the entire building.

CONTACT:
Project Team Leader: Mary Ann Piette, 510-486-6286, mapiette@lbl.gov
The project homepage: http://eetd.lbl.gov/btp/iit/diag/

“Development and Testing of an Information Monitoring and Diagnostic System for Large Commercial Buildings,” (paper presented at the ACEEE Summer Study on Energy Efficiency in Buildings, August 1998).
http://eetd.lbl.gov/EA/IIT/diag/pubs/ace3/aceee.html

There is a detailed “Virtual Tour” at: http://poet.lbl.gov/tour/
A project overview appears at: (http://eetd.lbl.gov/ciee/BuildingSystems.html)

~~~~~~~~~~~~

Building Life-Cycle Information Support System (BLISS)

BLISS is intended to provide a distributed computing environment for managing, archiving, and providing access to the wide variety of data and information that is generated across the complete life-cycle of a building project.

— > Identify Contraints/Opportunities — >
** Design — > Construction — > Commissioning — >
Monitoring — > Operations/Maintenance — >
Retrofits/Use changes — >
Re-evaluate Opportunities — > **

BLISS requires standardization in both a common building database model and in the mechanisms for transferring this information between tools.

The project has three major elements: (1) to specify the distributed software architecture, (2) to develop a life-cycle building model database schema, and (3) to develop a mechanism to capture and update “design intent” throughout the life cycle. The distributed systems architecture describes how various software components communicate, and the building model schema specifies the structure and semantics of the database (e.g. how performance metrics are defined and represented quantitatively).

BLISS is being developed within the evolving software specification from the International Alliance for Interoperability (IAI). The IAI is a non-profit alliance of the building industry with six international member chapters. Its mission is to integrate the industry by specifying Industry Foundation Classes (IFCs) as a universal language to improve communication, productivity, delivery time, cost, and quality throughout the building life cycle.

Currently, Metracker is a tool being developed to help capture design intent via a number of performance metrics and then track changes in those metrics over the life of the building. The data schema is built on the IAI building data model. It is being tested on a new building in Oakland CA.
http://eetd.lbl.gov/BTP/CBS/BPA/
Contact Rob Hitchcock, 510-486-4154, rjhitchcock@lbl.gov

~~~~~~~~~~~~

Remote Building Monitoring and Operations(RBMO)

A prototype system has been developed which permits remote monitoring and control of multiple commercial buildings across the Internet from a single control center. Such a system would be used by owner/operators of multiple buildings, such a school districts, governments, universities, large retailers, utility companies, building management firms, etc. Average savings estimated at 15% would come from reducing energy waste from equipment that runs when it does not need to, set point optimizations, and correcting operations and control deficiencies.

The project was initiated as a demonstration of the use of internet protocols and open systems for building monitoring, permitting integration of equipment from multiple vendors. It addresses similar IT issues of authentication, access-security, etc., which arise in a major Lab program on sharing scientific instrumentation over the internet.

The project includes the following components.

An Internet-to-building-EMCS (Energy Management Control System) gateway which speaks CORBA (Common Object Request Broker Architecture) protocol atop TCP/IP on the Internet side and either (preferably) BACnet atop TCP/IP, or a proprietary EMCS communications protocol, to the building EMCS.

Development of applications-level object specifications for HVAC objects, e.g., chillers.

A remote building monitoring and control center which will provide data visualization, database management, building energy simulation, and energy usage analysis tools.

Deployment and testing of the system in multiple buildings with diverse types of EMCS systems. Our goal is to assess scalability of the system to large numbers of buildings, both in terms of performance and accommodating heterogeneity of control systems and HVAC systems.

Remote control of HVAC systems – this awaits the availability of a secure CORBA implementation.

http://www.lbl.gov/~olken/RBO/rbo.html
Frank Olken 510-486-5891 olken@lbl.gov

~~~~~~~~~~~~

Simulation Research
http://gundog.lbl.gov/

The Building Energy Simulation User News is a quarterly newsletter for the DOE-2, BLAST, SPARK, EnergyPlus and GenOpt programs. Sent without charge, the newsletter prints documentation updates, bug fixes, inside tips on using the programs more effectively, and articles of special interest to program users. The winter issue features a cumulative index of all articles ever printed. Current issues are available electronically (below). All issues are available via regular mail, by request.

To subscribe or to request a back issue, contact: Kathy Ellington, KLEllington@lbl.gov

DOE-2 is a computer program for the design of energy-efficient buildings. Developed for DOE, DOE-2 calculates the hourly energy use and energy cost of a commercial or residential building given information about the building’s climate, construction, operation, utility rate schedule, and heating, ventilating, and air-conditioning (HVAC) equipment. A new version, DOE-2.2, includes an integrated SYSTEMS-PLANT program based on circulation loops with tracking of temperatures and flows, luminaire/lamp modeling of lighting systems, a window-blind thermal/daylighting model, input value defaulting using expressions, and expanded building component libraries.

EnergyPlus – A new-generation building energy simulation program based on DOE-2 and BLAST, with numerous added capabilities. Developed by the Simulation Research Group, the Building Systems Laboratory at the University of Illinois, the U.S. Army Construction Engineering Research Lab, and DOE.

GenOpt – A tool for multi-dimensional optimization of an objective function that is computed by a simulation program. This project at LBNL is sponsored by the Swiss Academy of Engineering Sciences, the Swiss National Energy Fund, the Swiss National Science Foundation, and DOE.

SPARK [Simulation Problem Analysis and Research Kernel]
A program that allows users to quickly build models of complex physical processes by connecting calculation modules from a library.

BDA: Building Design Advisor – A computer program that supports the concurrent, integrated use of multiple simulation tools and databases, through a single, object-based representation of building components and systems. Based on a comprehensive design theory, the BDA acts as a data manager and process controller, allowing building designers to benefit from the capabilities of multiple analysis and visualization tools throughout the building design process. The BDA has a simple Graphical User Interface that is based on two main elements, the Building Browser and the Decision Desktop.

International Alliance for Interoperability (IAI) – With international partners, develop Industry Foundation Classes(IFC) and an integrated building information model for describing buildings. Develop methods for allowing applications, such as CAD and energy analysis, to interoperate with the information model. Interoperability will allow diverse building drawing and simulation tools to share the same building description and to exchange results, thus simplifying building design, construction and operation.

RESFEN – A PC-based computer program (using DOE-2 as the simulation engine) for calculating the heating and cooling energy performance and cost of residential fenestration systems. RESFEN is free on a CD.

~~~~~~~~~~~~

Windows & Daylighting

http://windows.lbl.gov/
Stephen Selkowitz 510-486-5064 seselkowitz@lbl.gov

– > Glazing Materials Research – Low-Emittance and Solar Control; Static spectral filters; Deposition Processes

– > Characterization facilities/optical lab for in-house research, manufacturers, and to support product rating and related standards activities.

– > The Optical Data Library provides glazing layer (peer-reviewed) optical data for over 800 commercially available products; this data is used with the WINDOW and Optics software.

– > New Materials: track of new materials R&D around the world–strong ties to IEA.

– > Manage the DOE Electrochromic Initiative – 2 labs, 4 manufacturers
Electrochromics or “smart windows” have the potential for becoming an important element in building load management due to their ability to control perimeter cooling loads and lighting loads, both of which are major elements of building peak demand. Occupant control of window shading systems is notoriously unreliable. A smart window whose solar heat gain coefficient can be modulated over a 5:1 range provides a significant new opportunity. While coating development work continues at LBNL and with industry partners, a German product is being purchased by LBNL to test in an office building in Oakland, with a focus on control integration and load management issues.

– > Advanced Systems development, testing, evaluation

– > Window Properties – determining the thermal and optical performance of window systems

– > Daylighting – LBNL has recently recieved substantial funding from California utilities to help convert RADIANCE, a lighting and daylighting research tool that is highly accurate but hard to use, to a desktop environment design tool with a user friendly interface and link to CAD software. A first version will be released in 1999; improved version with additional capabilities in 2000.

– > Residential performance – support Energy Star program; Annual Energy Ratings

– > Commercial Glazing Performance- ramping up R&D in this area, beginning with development of a design guide for architects and engineers. Later will be looking at advanced facade systems and their role in intelligent buildings. Innovative building skins are seen as not only energy savers but as building features that enhance the quality of the indoor space.

~~~~~~~~~~~~

Lighting Research

The Lighting Research Group researches and develops fixtures, controls, and software which employ and promote energy efficient lighting. The group is primarily funded by DOE, although some funding is provided by industry for specific projects. The group is recognized as one of the main players in the lighting industry, as both technology developers and as observers/influencers. As such they have an indepth awareness of technological developments, issues and trends in the industry.

Research projects include sources, controls, fixture design, and human factors. Software for lighting design is a major R&D area. The test lab has the equipment which is essential for testing and designing energy efficient lighting fixtures, including a goniometer, integrating sphere, and spectro-radiometer for measuring light output. There is also an electric power analyzer for testing power and power quality of light sources.

The lab has in-house and collaborative work in new kinds of light sources that are being developed — solid state, electroluminescent, white LED, and organic liquids.

Their work to design the (non-halogen) compact fluorescent torchiere has led to the commercial availability on a wide scale of these much safer and more efficient lamps. Several universities did free exchange programs for dormitory residents, and now some utilities are doing it for their customers.
(see website for more details: http://eetd.lbl.gov/btp/lsr/torchiere.html)

Of interest to utilities, compact fluorescent bulbs (CFL) are growing in popularity, but there are issues about price, quality, and longevity. Some imports have low prices, but don’t last as long as they should. To deal with this, some utilities are specifying an unecessarily high number of life hours. Specifications need to incorporate the issue of how often lights are turned off and on, but current testing procedures don’t deal with this effectively. LBL is proposing a new approach to life testing, but lacks the funding to demonstrate it.

Controls
“Bi-level” light switching is cost effective, and it is now in the building code for the state of California. (two switches–one controls 1/3 of the lighting in a room, and the other controls the remaining 2/3). Other effective measures are photosensors (for daylighting) and occupancy sensors. But it is important to solve the right problem. Hotels got little benefit from occupancy sensors, because guests rarely leave lights on when they’re out of the room. The biggest waste was found to come from bathroom lights left blazing as a night light — providing a dimmed setting would work better.

Recently, LBL combined low-glare, lower level ambient lighting with custom designed task light fixtures, in a US Post Office sorting facility. Occupancy sensors turned the task light on only when the clerk was present. Task light levels were improved while overall energy was reduced by 70%.

~~~~~~~~~~~~

Lighting Software

RADIANCE – A suite of programs for the analysis and visualization of lighting in design. Input files specify the scene geometry, materials, luminaires, time, date and sky conditions (for daylight calculations). Calculated values include spectral radiance (ie. luminance + color), irradiance (illuminance + color) and glare indices. Simulation results may be displayed as color images, numerical values and contour plots. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new lighting and daylighting technologies. (for UNIX)
http://radsite.lbl.gov/radiance/HOME.html

ADELINE 2.0
(Advanced Daylighting and Electric Lighting Integrated New Environment)
ADELINE is an integrated lighting design computer tool developed by an international research team within the framework of the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 12. It provides architects and engineers with accurate information about the behaviour and the performance of indoor lighting systems. Both natural and electrical lighting problems can be solved, in simple rooms or the most complex spaces. ADELINE produces reliable lighting design results by processing a variety of data (including:geometric, photometric, climatic, optic and human response) to perform light simulations and to produce comprehensive numeric and graphic information. (for PC)
http://radsite.lbl.gov/adeline/HOME.html

SUPERLITE 2.0 is a lighting analysis program designed to predict interior illuminance in complex building spaces due to daylight and electric lighting systems. SUPERLITE enables a user to model interior daylight levels for any sun and sky condition in spaces having windows, skylights or other standard fenestration systems.
http://eetd.lbl.gov/btp/superlite20.html

LBL Lighting publications are available (some can be downloaded) at:
http://eetd.lbl.gov/btp/pub/LGpub.html

Steve Johnson 510-486-4274 sgjohnson@lbl.gov
http://eetd.lbl.gov/btp/lsr/

~~~~~~~~~~~~

Home Energy Saver

http://HomeEnergySaver.lbl.gov.

The Home Energy Saver(HES) website, announced in March ’99, brings advanced building simulation software to an interactive website to help consumers identify the technologies that will save them the most energy and money.

The Home Energy Saver quickly computes a home’s energy use on-line based on methods developed at LBNL. By changing one or more features of the modeled home, users can estimate how much energy and money can be saved and how much pollution prevented by implementing energy-efficiency improvements. All end uses (heating, cooling, major appliances, lighting, and miscellaneous uses) are included.

The Home Energy Saver’s Energy Advisor calculates energy use and savings opportunities, based on a detailed description of the home provided by the user. Users can begin the process by simply entering their zip code, and in turn receive instant initial estimates. By providing more information about the home the user will receive increasingly customized results along with energy-saving upgrade recommendations.

Developed for the ENERGY STAR Program (EPA and DOE).

The HES Mission Statement ( http://hes.lbl.gov/hes/mission.html ) explains the way the program seeks to work with and support private-sector vendors, by complementing their efforts, not competing with them.

Nor is it intended to compete with private vendors of web-based software who seek revenues from utilities who license their products. Nevertheless, utility partnerships with HES are still possible, and indeed some have already begun.

Contact: Rich Brown, 510-486-5896, REBrown@lbl.gov

LBNL CO Occupational Dosimeter

(One of a series of notes detailing results of recent visits to
Lawrence Berkeley National Labs-LBNL)
————————————————————–

CO Sensor – Occupational Dosimeter

A new lightweight, inexpensive, accurate carbon monoxide (CO) sensor and monitoring system has been developed by scientists LBNL and Quantum Group Incorporated (QGI, San Diego), under a cooperative R&D agreement (CRADA).

The original impetus was to create a device to do population exposure studies, since outdoor measurements of levels of CO (as required by the Clean Air Act) don’t relate to deaths and acute poisonings caused by CO. CO poisoning deaths (500-1000 per year) occur indoors, involving accidents, misuse of heaters, unvented gas flames, and auto exhaust. 19,000 poisonings were reported by poison control centers in 1995.

There is limited understanding about carbon monoxide exposure risks, partly because there has been no affordable way to accurately measure CO in the field. Some of the current methods of measurement require expensive, heavy equipment or unwieldy air bag samplers. Others are relatively inexpensive and lightweight, but they are not accurate or sensitive enough to provide credible quantitative results for a large number of sites.

To fill this gap, LBNL and QGI developed the new CO sensor, which can clip onto a person’s clothing. It can be used as an occupational dosimeter, which measures a worker’s average exposure, or as a residential passive sampler measuring exposure in a home or office over a one-day to one-week period. Analysis is simple—the device is placed into a standard lab spectrophotometer which, by measuring its color change, instantly indicates how much carbon monoxide the sensor absorbed. A single sensor can be reused many times.

To test the sensor’s performance, a study was done of the CO exposure of workers at San Francisco’s Moscone Convention Center, where propane powered forklifts are active throughout, and trucks drive up to interior loading docks. (The Center already had installed a number of measures to reduce CO exposure.) Workers wore sensors and commercially available diffusion tube devices. CO levels were also measured by traditional means.

The tests showed that the device measured average workshift CO exposures accurately to within one part per million. The commercially available diffusion tube under-reported CO exposures by an average of about 3 parts per million.

QGI is now looking for private-sector partners for distribution and is developing plans to manufacture and market the CO occupational dosimeter.

See press release May 17, 1999, at:
http://www.lbl.gov/Science-Articles/Archive/carbon-monoxide-sensor.html

Contact: Michael Apte, MGApte@lbl.gov, 510-486-4699

Quantum Group (San Diego CA) produces a line of CO detection products including detectors for residential and RV use, appliance safety shut-off, and ventilation controls.
http://www.qginc.com/

Mark Goldstein, President, 619-457-3048 x103 fax 619-457-3229
Michelle Oum, Director, Sensor R&D, x110

LBNL Insurance Program

Date: Wed, 07 Jul 1999 09:44:52 -0700

(First of a series of notes detailing results of recent visits to
Lawrence Berkeley National Labs-LBNL)
————————————————————–

Insurance Loss Protection Through Sustainable Energy Technology

LBNL has begun a new and novel area of inquiry, exploring how energy relates to insurance-loss risks. The program is opening a number of fascinating new areas, and opening lines of communication between the insurance industry and the many different players in energy and environment.

Utilities have begun to initiate collaborations with insurance companies: there are many interesting and innovative opportunities for cross marketing and introduction of new types of customer services, product differentiation, and customer retention measures.

See Program website at http://eetd.lbl.gov/insurance

Contact: Project Leader: Evan Mills, 510-486-6784, emills@lbl.gov

Climate Change Risks
It is clear that weather-related natural disaster losses are becoming more and more severe, and possibly uninsurable. Global warming may or may not be responsible for global climate change, and greenhouse gases and energy consumption may or may not be major contributors to warming or climate change. Nevertheless, there is a growing view that something needs to be done, hastened by the growing scientific consensus about the linkages.

This article provides a good review of these ideas:
“The Coming Storm – Global Warming & Risk Management”
Risk Management magazine, May 1998, pages 20-27.
http://eande.lbl.gov/CBS/PUBS/comingstorm.html

The insurance industry – in Europe, particularly – is tackling the issue head-on, realizing that they have the most at risk and the most to lose. If energy impacts need to be reduced, then insurers have a stake and a role to play. A leading group of international insurers and reinsurers, led by companies in Europe and Asia, has joined together as the United Nations Environment Programme (UNEP) Insurance Industry Initiative on the Environment. (This kind of effort isn’t new. Historically, the industry has lead developments such as establishing fire departments and the Underwriter’s Laboratory.)
http://eetd.lbl.gov/CBS/insurance/UNEPinvite.html (more on UNEP)

Direct Risk/Loss Reduction — “No Regrets”
Even if you don’t believe in global warming, there are many untapped opportunities to reduce insured risks through the application of energy-efficient and renewable-energy technologies and services. The promotion of technologies and services for insurance loss reduction and loss prevention is as old as the fields of insurance and risk management, but this research is finding a whole new category of technology to be applied.

This approach provides a “no-regrets” opportunity for insurers, as the risk-reducing benefits offer distinct immediate value, irrespective of the timing or extent of damages related to global climate change.

Example–Halogen torchiere lamps consume a lot of energy, and pose a significant fire hazard. Replacing them with compact fluorescent torchieres reduces both. An insurance company and utility cofunded a program to do this in college dorms.
See: http://eetd.lbl.gov/cbs/EMills/arkwright.html

LBNL identified 78 technologies and techniques that can help reduce insurance losses and manage risks. See LBNL Report #41432, August, 1998
( http://eetd.lbl.gov/CBS/insurance/LBNL-41432.html )

The most common physical perils addressed were power failures, fire and wind damage, and home or workplace indoor air-quality hazards. These can potentially reduce insurance losses for many types of coverage — boiler and machinery, builder’s risk, business interruption, commercial property insurance, completed operations liability, comprehensive general liability, contractors liability, environmental liability, product liability, professional liability, service interruption, workers’ compensation, health/life insurance, and homeowners insurance.

CERTS – New DOE Prog in Elec. Reliability

The Consortium for Electric Reliability Technology Solutions (CERTS) has been tasked by DOE to undertake a major new $2.5 million program in electric power system reliability research and technology development. (Congress re-established a budget for Transmission Reliability research in FY 1999, in DOE’s newly renamed “Office of Power Technologies” (OPT), formerly called the Office of Utility Technologies, under Deputy Assistant Secretary, Dan Adamson.)

The members of CERTS include:
Lawrence Berkeley National Laboratory (LBNL)
Edison Technology Solutions (ETS)
Oak Ridge National Laboratory (ORNL)
Pacific Northwest National Laboratory (PNNL)
Power Systems Engineering Research Center (PSERC)
Sandia National Laboratories (SNL).
The program is an important element in DOE_s response to the recommendations and findings of the SEAB Task Force on Electric System Reliability final report. (See UFTO Note, Oct 8, 1998, or go to: http://www.hr.doe.gov/seab.)

PSERC is a group of universities that have formed a cross-disciplinary team dedicated to solving the challenges arising from power system restructuring. It’s worth a visit to their website at: http://www.pserc.wisc.edu.

CERTS organizers are committed to a high degree of involvement by stakeholders. In particular, there will be a Technical Advisory Committee (see below), and numerous opportunities to participate in the research itself. A website is in preparation to provide public access to program details and developments.

KEY CONTACTS:

Joe Eto, LBNL, Program Office Manager for the Consortium
jheto@lbl.gov, 510-486-7284

Phil Overholt, DOE/OPT, T&D Reliability Program Manager
philip.overholt@ee.doe.gov, 202-586-8110

———————————————-
Introduction and Overview–(excerpted from CERTS proposal)

The U.S. electric power system is in transition from one that has been centrally planned and controlled to one that will be increasingly dependent on competitive market forces to determine its operation and expansion. Unique features of electric power, including the need to match supply and demand in real-time, the interconnected networks over which power flows, and the rapid propagation of disturbances throughout the grid pose unique challenges that are likely to be exacerbated in the future. As the physical events of 1996 and the market events of 1998 demonstrate, the reliability of the grid and the integrity of the markets it supports are integral to the economic well-being of the nation.

The Consortium for Electric Reliability Technology Solutions (CERTS) was formed to develop and commercialize new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system under the emerging competitive electricity market structure.

CERTS organizes its activities under four major areas: (1) Reliability Technology Issues and Needs Assessment; (2) Real Time System Control; (3) Integration of Distributed Technologies; and (4) Reliability and Markets. The first area encompasses strategic planning; the remaining three areas involve research and technology development. (See individual projects described below).

CERTS Organization

LBNL operates a Program Office for CERTS with day-to-day responsibilities for managing CERTS projects and activities acting under direction from the Management Steering Committee.

ETS operates a Commercialization Office for CERTS with responsibilities for preparing commercialization plans and, when appropriate, implementing commercialization activities for CERTS projects and activities.

CERTS is also working with DOE to create a Technical Advisory Committee, consisting of 10+ industry stakeholders and experts to review the activities of the consortium and provide guidance on research direction.

FY 99 activities for DOE include work in five areas

1. Grid of the Future

The first year of a two year planning study to identify emerging gaps in reliability technology R&D. In the first year, CERTS will lay the groundwork for the development of a federal R&D roadmap by preparing six white papers, which will be the basis for industry-wide stakeholder workshops on: (1) alternative scenarios for the future of the electric power system, including a detailed articulation of the technological assumptions underlying each of these futures; (2) assessment of the technology and control R&D needs for widespread integration of distributed resources; (3) recent reliability issues review, including in-depth analysis of technological and institutional aspects of recent reliability events (e.g., summer 1996 WSCC events; winter 1997 northeast ice storms; winter 1998 San Francisco outage, etc.); (4) review and assessment of the current structure of U.S. bulk power markets and provision of reliability services (including 1998 price spikes in mid-west and west, and absence of meaningful opportunities for demand response); (5) assessment of the technology and control R&D needs for real time system control; (6) assessment of the treatment of uncertainty in planning and operational models.
2. Distributed Technologies Test Bed

The first year of a major multi-year effort to design and ultimately, with industry and other stakeholder partners from industry, operate an in-field distributed technologies test bed. The objective of this work is to develop and demonstrate the technologies and control strategies needed to support widespread integration of distributed resources into the grid.

During the first year, CERTS will: (1) specify the information needed to conduct system simulation studies of distributed technologies, assemble available information, and develop a plan for additional laboratory bench tests to gather missing information; (2) conduct simulation studies of the different scenarios of distributed technology penetration using available data and models to evaluate distribution system reliability impacts and identify micro-grid control issues; and (3) develop a multi-year demonstration plan for a distributed technologies test bed.

3. Reliability Market Monitoring, Design, and Analysis

The first year of a multi-year effort to improve the design and operation of markets for the provision of reliability services in a restructured electricity industry. An integrated set of data development, simulation, and design activities will provide both immediate and longer-term benefits to emerging competitive markets.

During the first year, CERTS will: (1) collect data on ancillary services market compliance for the CA ISO and evaluate alternative user interfaces for using these data; (2) use these and other data to examine the performance of the market and, where warranted, suggest directions for fundamental changes in the design of these markets; (3) use experimental economic methods and other methods to simulate the performance of both current and proposed market designs; and (4) analyze customer-side technical requirements for provision of reliability services

4. Smart VAR Management System

Develop and demonstrate a software tool that will allow system operators to measure, communicate, and process real-time data to perform a VAR analysis of the WSCC grid and provide system operators with voltage profiles and reactive reserve margins at key substations. Had this tool been available, the 1996 outages on the Western grid could have been prevented.

During the first year, CERTS will develop, prototype, and field-test hardware and software that can be integrated with current energy management systems to provide operators with necessary information, contingency simulation, performance tracking, and report generation on voltage and reactive reserve margins.

5. Distributed Control

The first year of a multi-year effort to develop and demonstrate the appropriate role for distributed controls in management of the operations of regional power systems. During the first year, CERTS will initiate a demonstration of the ability and comparative performance of autonomous reasoning agents to maintain power system reliability compared to conventional centralized control methods.

Global Emissions/Atmospheric Release Modeling

Source: Lawrence Livermore National Laboratory
Date: 7/1/93 Record No.: 10016
Contact: Jesse Yow, 510-422-3521

Global Emissions/ Atmospheric Release Modeling
LLNL was called upon for analysis of Chernobyl, the Kuwaiti Oil Fires, etc. Can handle accident/leak situations on any scale.