Posts

Green Power Marketing in Retail Competition: An Early Assessment

LBL and NREL recently released this study on green power marketing that finds that the green marketplace is still in an early stage of development with no clear indication of its ultimate size.

The study examines experiences to date with green marketing programs in states across the country. Among the findings:
– pilot programs which include green products are philosophically supported by consumers, but fail to attract real buyers when consumers are asked to switch to green suppliers;
– where markets have been fully opened to competition, green marketers provide a superior quality product over pilot programs;
– disclosure of resource mix is a key element of consumer interest in green products; and evaluating green market demand is difficult.

The abstract  is shown below, and the entire report
can be downloaded at either of these two sites:

LBL’s Electricity Markets & Policy website:
http://eetd.lbl.gov/ea/emp/emppubs.html

DOE’s Green Power Network website:
http://www.eren.doe.gov/greenpower

——————————

Green Power Marketing in Retail Competition: An Early Assessment

(report #  LBNL-42286,    NREL/TP.620.25939)
Ryan Wiser LBNL,    510-486-5474; rhwiser@lbl.gov
Jeff Fang, Kevin Porter, and Ashley Houston,  NREL

February 1999

ABSTRACT

Green power marketing—the business of selling electricity products or services based in part on their environmental values—is still in an early stage of development. This Topical Issues Brief presents a summary of early results with green power marketing under retail competition, covering both fully competitive markets and relevant direct access pilot programs. The brief provides an overview of green products that are or were offered, and discusses consumers’ interest in these products. Critical issues that will impact the availability and success of green power products under retail competition are highlighted. Some of the key observations and conclusions of the work include:

Experience from pilot programs in New Hampshire, Massachusetts, and Oregon—while insightful in many respects—should not be broadly generalized. The direct access pilot programs in these three states all included green marketing. Yet only a fraction of the green products were differentiated based on their renewables content, and the environmental quality of many of the products has been questioned. Because of the nature of pilot programs, however, there are limits to what can be learned from these experiences.

Green power markets have developed in all four states currently open to full competition. Experiences in the more fully competitive markets of California, Massachusetts, Rhode Island, and Pennsylvania provide a more realistic test of green marketing. These markets have only been open for a short time, and each differs substantially. Green power marketing is occurring in each market, however, and a total of 20 green power products have been launched. All of these products have been differentiated based on their renewables content, and 60% of the products include commitments to incorporate some new renewables over time. While concerns remain over the environmental and resource content of some products, overall product quality is superior to that seen in the pilot programs.

The availability and success of green power products will hinge on several factors, including the regulatory rules and public policies established at the onset of restructuring. Differences among the markets discussed here can largely be traced to the design of specific market rules and public policies, particularly the default generation price offered by incumbent utilities. For the green market to succeed, regulators and policymakers will have to develop market structures, rules and policies in ways that are at least neutral to, and perhaps even support, this emerging new market. Surprisingly, market rules that promote vigorous price competition and overall customer switching appear especially important.

Environmental disclosure requirements and certification programs may also play an important role in the success of green power markets. Given ongoing concerns about the credibility and environmental value of some of the green power products, customer information requirements and credibility-enhancing programs may be critical.

Evidence to date shows that green products have had some success in markets newly opened to competition. Niche markets clearly exist for green power. Residential demand has been most prominent, though nonresidential demand has been more significant than many expected. Nonetheless, it will clearly take time for the green market to mature, and there remain legitimate concerns about the ability of customer-driven markets to support significant amounts of renewable energy. Unfortunately, there is currently insufficient data with which to predict the long-term prospects for green power sales with any accuracy.

Public Interest R&D

This paper was just published in Utilities Policy, on a timely subject which is of interest to many of you. The authors will have reprints available, and have supplied me with an electronic copy of the (15 page) manuscript, from which I extracted the following excerpts. The complete paper is 10 pages as published.

Contact: Carl Blumstein, 510-642-9588, cjblumstein@lbl.gov

———————————————–
“Public-Interest Research and Development in the Electric and Gas Utility Industries,”
Utilities Policy: Volume 7, Issue 4, 21 April, 1999, pages 191-199
Carl Blumstein, University of California Energy Institute
Stephen Wiel, Lawrence Berkeley National Laboratory

An unintended consequence of the restructuring of the electricity industry in the U.S. has been a sharp decline in expenditures for R&D by investor-owned utilities. This paper examines how the public interest may be damaged by this decline in R&D expenditures and discusses some of the strategies that could be employed to mitigate the damage.

The restructuring of the electricity industry has been accompanied by a sharp decline in R&D expenditures by investor-owned utilities (IOUs), which have fallen by more than 45% between 1993 and 1996. The trend in the U.S. … is consistent with trends in other countries where the electricity industry has been or is being restructured.

A key driver of this trend is competitive pressures to cut costs. “While cuts are occurring across the board, RD&D departments are particularly vulnerable because in most cases research projects are not considered essential to the operation. In addition, the value of RD&D projects are difficult to quantify and often seen as a long-term investment. These trends are particularly prevalent for IOUs positioning themselves to increase profits for shareholders.” (Schilling and Scheer 1997) While, in retrospect, this trend does not seem surprising, it was certainly not an intended consequence of restructuring. Intentions notwithstanding, policy makers are now confronted with the questions: (1) how will this decline affect the public interest and (2) if some of the effects are adverse to the public interest, what mitigating steps, if any, should be taken?

This paper is intended to stimulate discussion on these questions by examining some of the issues in detail. First, we define public-interest R&D and illustrate the definition with some examples. The examples also give some idea of what may be lost if utility R&D expenditures continue to decline. Then we examine some of the issues that would be raised by efforts to mitigate the decline in utility expenditures for public interest R&D. These issues, which we explore using a series of examples, are funding, governance, and scope. Finally, in a brief conclusion, we discuss our concern that public interest R&D is likely to suffer some serious damage if action is not taken. However, we believe that there are likely to be many workable solutions to the problems we pose.

Technological change is an important contributor to economic growth and R&D is an important contributor to technological change. Any sharp decline in R&D expenditures is, at the least, a cause for concern. On the other hand, restructuring is moving the business of electricity generation decisively toward competition. If history is a guide, this competition will be conducive to innovation. New R&D investments may be forthcoming from the competitors or their suppliers. Thus, concern with the current decline in R&D expenditures should focus on the R&D, if any, that will not be adequately provided by the competitive market. Especially at risk are R&D funds for projects that, from a societal perspective, have measurable public benefits but that private markets will probably be unable to support because these public benefits cannot be appropriated by private firms.

In current discussions about utility industry restructuring this type of R&D has come to be known as public-interest R&D. Among the areas where the benefits of public-interest R&D may be important are health, safety, environment, energy efficiency, and “pre-commercial” technical information. Many R&D projects have both private and public benefits.

Strategic options [to provide] post-restructuring R&D support mechanisms [are discussed], with a description of funding, governance and scope, followed by an analysis of pros and cons. The four options offered are – Direct Industry Control, – Industry Directed Not-For-Profit, – Publicly Directed Not-For-Profit, and – Direct Government Control. These four are not mutually exclusive and do not begin to exhaust the possibilities.

We … conclude … that none of the options described above is sufficient by itself to provide for public-interest R&D after restructuring. In the past, public-interest R&D was sustained by a mixture of public and private, regulated and unregulated, and federal and state institutions and support mechanisms. Today, in the midst of restructuring, it is not surprising that some of these arrangements are being disrupted given the profound institutional upheavals now happening in the energy industry. Public-interest R&D is likely to suffer some serious damage if actions are not taken to deal with these disruptions.

The purpose of this paper is to stimulate discussion concerning what actions to take. The situation is complex, but the problems are by no means insoluble. Indeed, we think there are likely to be many workable solutions. Our hope is that discussion will begin to identify some of the better solutions and will contribute to the evolution of a new mixture of public and private, regulated and unregulated, and state and federal institutions and support mechanisms that will enable public-interest R&D to continue providing benefits after restructuring.

Bulletin #11 – Various & Miscellaneous FYIs

UFTO Bulletin #11

August 7, 1995

To: UFTO Members:

. . in this issue: . . . . . . . . .

 

BONUS ISSUE: Various & Miscellaneous FYIs

  •  Anderson Consulting prepared a slick report called “The Role of Broadband Communications in the Utility of the Future”, sponsored by a cable consortium and themselves. Call Tony Fakonas at 415-546-8599 to request a copy.
  • Lawrence Berkeley Lab’s Energy Analysis Department just released their 1994 Annual Report. I’ve already given your names and addresses to them and asked that they put you on the mailing list for it and their newsletter. Call Karen Olson if you want to change who it goes to in your company. 510-486-5974
  • Does “BMP” mean anything to you? It stands for “Best Manufacturing Practices”, a program started by the Navy. They’ve taken survey teams into nearly 70 major companies, and prepared a highly detailed assessment of their processes, identifying any “best” practices they find. They just published a report on Sandia National Lab, so we can get another perspective about SNL. They have reports on all of the places they’ve studied, and a program of regional workshops, a free online database, and other kinds of outreach. Something for your industrial reps, or anyone involved in benchmarking or quality. I’d bet BMP would love to survey a utility. For information, call 1-800-4267.
  • GRI goes out of its way to make information available. To get a free subscription to their magazine, GRID, call Carrie Holmes at 312-399-8100. It’s very worthwhile, especially for electric-only utilities, to keep an eye on what they’re doing, particularly in end-use technologies. (Watch out for your commercial cooling load!)
  • Technology 2005 , the 6th national technology transfer conference and exposition, will be October 24-26, 1995, at McCormick Place in Chicago. It’s worth at least one day to go through the exhibits. Call 212-490-3999 for registration info. (I may attend as part of UFTO2. FYI, as of today 4 companies have said they’re renewing.)
  • Attention Geo/Data/AMFM/Mapping fans: Here in Silicon Valley, there’s a project called BADGER (bay area digital geo resource), which is setting up an Internet accessible geographic visualization system for the area. The system will include a shareable base map, various attribute layers, and three prototype applications: vegetation management, fire hazard risk assessment, and storm water discharge pollution management. Check out the demo to be posted at http://www.svi.org/BADGER.html. Call Michael McRay, Smart Valley, Inc., 415-857-6968, michaelm@svi.org (or me) if you want more information.
  • “As Built” drawings and updating can be a major hassle. A little company called Eos Systems in Vancouver BC has a product that gets 3-d cad data from ordinary photos, and they need help to explore utility applications. Let me know if you want to pursue this.
  • Recommended reading: almost the entire July 1 issue of Public Utilities Fortnightly….

EdB

Bulletin #8 – LBL Report Utility Needs INEL

UFTO Bulletin #8

June 15, 1995

To: UFTO Subscribers:

. . in this issue: . . . . . . . . .

LBL Report Utility Needs INEL

 

1. Enclosed — the final report for Lawrence Berkeley Laboratory (LBL)…. note the special core competencies in Energy Analysis, Buildings, Lighting, etc. and the special situation of the CIEE.PLEASE don’t put it in your “to-read” pile…..Look it over and make copies and route it in your company now.

2. I sent our UFTO “Technology Needs of Utilities” document to ten labs last week. We’re already getting some responses. A copy is enclosed for you, along with the cover letter and the distribution list….these are our key contacts in the labs. Go ahead and call them at any time you feel the urge.

3. There’s a whole new situation at Idaho National Engineering Lab(INEL). Thanks to a referral by Graham Siegel, I got a call from Tom Sauerbrun, their new Utility Program Manager. As you may recall, INEL’s management contract was awarded last year to a new team headed by Lockheed (now Lockheed Marietta), with a daring new performance based compensation scheme, especially heavy on tech transfer and commercialization.

INEL has some very exciting new technology for the utility industry that they’ve kept very quiet, and we’re getting an early look. Official announcements are due in a few weeks.

Specifically, they say they have a complete and tested “Intelligent Distribution System”, ready for prime time (i.e., spinoff from the lab of a fully operational commercial team).. It’s been developed in-house, and implemented on the Lab’s own extensive power system, where it will be demonstrated. It’s an advanced software system that can integrate many different commercial technologies that are already available. If INEL has it right, this sounds a lot like what many of you are looking for — advanced distribution control technology, and a way to make it into a major new business opportunity. Let me know if you can’t wait for their announcement and want to make contact immediately.

We’re also the first to be notified of their planned invitation-only “Utility Day”, to take place in August or September. Details to follow.

Any objections if I do INEL now as part of the 94-95 program, in place of a DOD lab?

BTW (that’s “by the way”, in I-way lingo) – Livermore tells me there’s tremendous interest in Capacitive Deionization (see UFTO Update 1/95) — vendors taking licenses for all kinds of applications, and even a major utility has come to have a look–not one of us, sorry to say. Isn’t the idea of a neat little electric water softener intriguing? Not to mention desalination. You could do a joint venture with one of the licensees, e.g. a water treatment company.

PS: Have a look at the enclosed brochure for the UBG meeting (July 17 — preceding the 5th International Conf. on Batteries for Utility Storage, July 18-21). Looks like a good place to learn what’s happening. If you don’t have anyone going, my offer to attend on your behalf still stands.

Technology Transfer Opportunities – Berkeley National Laboratory

Final Report

Technology Transfer Opportunities in the National Laboratories

Lawrence Berkeley Laboratory

Berkeley, California

June 1995

Prepared for:

Utility Federal Technology Opportunities (UFTO)

 By:

Edward Beardsworth

Consultant

This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities

 

 

Contents:

page

1. Summary

2 LBL Organization

3. LBL Technologies & Programs

10. LBL Contacts

 

This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.

 

Summary

This report details findings about technology and technology transfer opportunities at the Lawrence Berkeley Laboratory (LBL)that might be of strategic interest to electric utilities. It is based on two visits to LBL in February and May 1995, as part of the UFTO multiclient project.

Background

Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, the UFTO program has been established as a multi-client study of the opportunities thus afforded electric utilities.

LBL Organization

Unlike the matrix structure common at other DOE labs, LBL has a straight line management organizational structure, and they’ve mostly eliminated (except on the administration side) the layer of managment known as “ALD’s” or Associate Laboratory Directorates seen at many other labs.

Nine technical divisions report directly to the Laboratory Director, C. V. Shank, and several others report to the ALD for Operations. There are also a number of Research Centers and User Facilities within the various divisions.

LBL is a major multiprogram lab managed by the University of California (as are Livermore and Los Alamos), with more than 3000 employees, a third of which are scientists and engineers. The annual budget is over $250 million. LBL is situated adjacent to the Berkeley campus of the University of California, and there is a great deal of collaboration and overlap between the two organizations. Many of the staff hold dual appointments, and UC graduate students often work in LBL programs (notably reducing the cost of research!). No classified work is done at LBL, so security is light, contributing to a campus-like atmosphere.

Administrative relationships can become quite complex. Projects, programs or “centers” may be either university or lab-based. One particularly noteworthy instance is the California Institute for Energy Efficiency (CIEE), which is actually part of UC’s quasi-independent Energy Institute, and until recently was funded by California utilities and state agencies. It is set up as a CRADA between LBL and the California utilities. Its technical resources could become more broadly available as they seek new roles and sources of funding.

Virtually all of the programs in the Energy and Environment Division are relevant to the electric utility industry, as are portions of other divisions(e.g. Materials, Chemical and Earth Sciences, and Information and Computing Sciences). Though the organizational structure is not ideally suited to cross-cutting activities, collaboration and joint efforts are not uncommon.

Within Energy and Environment, areas of interest include building energy efficiency, energy analysis, lighting technology, combustion cleanup, and energy conversion and storage. LBL has very strong programs in these areas, however the dissemination of results and interaction with industry has been somewhat limited, suggesting a possible underutilization of these resources by utilities which UFTO can help to overcome.

Generally speaking, much of LBL’s work in these areas tends to be informational or precompetitive. However there are also a number of specific developments underway with industrial partners, and some that could represent important strategic technology opportunities for utilities.

One other general point: each of the labs annually publishes an “Institutional Plan”, which is organized according to which DOE Program Office supports the work, not the lab’s own organizational structure. Thus a “mapping” between the two structures is required to be able to see the work of the groups within a lab. In most instances, divisions and programs also publish annual reports, providing detailed though not always current accounts of the work

General Telephone # is (510) 486-4000

LBL Technologies & Programs

 

Topics Covered in this Report:

• Energy in Buildings

• Lighting

• Energy Analysis

• Environmental Research (Combustion and Air Quality)

• Information & Computer Sciences

• Materials Science

• Electrochemistry–Advanced Batteries and Fuel Cells

• Geothermal Energy

 

Energy in Buildings

LBL is particularly strong in work on Energy in Buildings from a number of points of view, in three distinct programs and a “Center”, plus the CIEE.

1. Indoor Environment Program, Joan Daisey, 510-486-7491
Ventilation, infiltration, ducts, efficiency in existing buildings, radon, indoor air pollutants, exposure and risk assessment, indoor air quality standards, etc.

• Duct Sealing Technology Mark Modera 510-486-4678, Max Sherman 510-486-4022

Energy losses from leaks in ducts are variously estimated to account for as much as 1/3 of the energy used in residential air-distribution heating and cooling. LBL has developed a technique for sealing leaks in existing systems. Analogous to “stopleak” used in automobile cooling systems, an aerosol is injected into the system which deposits itself at leaks, closing them off. Developed at LBL with support of CIEE, it is to be commercialized by EPRI, acting as a member of CIEE. (Agreements currently in negotiation.)

• Indoor Air Quality

Becoming more of an issue. Lawsuits more common. Standards being revised. Need better sensors for commercial use. Direct measurement more meaningful than specifying air change rates. LBL working on specific species, e.g. VOCs, CO, etc. Environmental Chambers allow detailed simulation and test of emissions from indoor sources.

2. Building Energy Analysis (in the Energy Analysis Program) Alan Meier, 510-486-4740
Data compilation, analysis of measured data (meta analysis across all available studies), assessment of efficiency impacts of technologies and programs, DEEP (Database on Energy Efficiency Programs), impact of high albedo surfaces, shade trees, etc., monitoring building performance, alternatives to compressive cooling, load shape estimation, urban climate, public housing.

3. Building Technologies Program , Stephen Selkowitz, 510-486-5064
Windows and daylighting, building energy simulation tools, lighting systems.

• Electrochromic Window Coatings (“smart windows”) can vary light transmission by from10-80% with the application of a low dc voltage; can be controlled to maintain constant light levels with dimmable electric lighting, control solar heat gain, and result in substantial overall energy savings and load control.

LBL is technical lead for DOE, and holds patents for two families of polymers for use in these coatings, and has CRADAs underway with Dow Chemical. Expect commercial prototypes in 2-3 years. Research field tests are already underway. There will be demos with utilities.

• Selective (“low-E”) Coatings pass visible light and block infrared. LBL doing research in the durability and performance of these coatings.

• Advanced Insulating Windows (“Superwindows”) include coatings and gas filled systems. LBL developed a concept which has been commercialized (with utility co-supported field tests

• Daylighting Design Tools

4. Center for Building Science , Evan Mills, 510-486-6784
A “home” for the three above programs, serving as a national and international source of information, technical support to policymakers, support to new institutions and demonstration programs, facilitate tech transfer.

“From the Lab to the MarketPlace–Making America’s Buildings More Efficient”, Jan, 1995

(40 page overview of building programs)

Center for Building Science News

(contact Ralph McLaughlin, 510-486-4508–also for list of the Center’s publications.)

5. California Institute for Energy Efficiency(CIEE),

Jim Cole, Director, or Carl Blumstein, Assoc. Director, 510-642-9588
This is a separate entity of the University of California — a collaborative of the California PUC and Energy Commission, the California electric and gas utilities, Universities, and LBL, focused directly at advancing technology for energy efficiency in California (all sectors) mid to long term.

CIEE may be an interesting target of opportunity to UFTO members. Its funding has been drastically cut — Calif. utilities are no longer paying dues. CIEE has funds to keep going for another 2 years, as it looks at alternatives for the future, one of which is to broaden its attention outside California.

CIEE may be a useful resource to utilities elsewhere, with its expertise and repository of technical information (available free). Also, there are ongoing projects which could be tuned or redirected to the interests of new players. As just one example, Building Performance Measurement, Operation & Control: Diagnostics for Commissioning and Operation has DOE support, and may be a “line of business” opportunity for utilities. An automated system is being developed that will help operators diagnose performance degradation, so that buildings can be operated “to spec”. There is also work in low NOx burners, alternatives to compressor cooling, HVAC distribution systems, and many other areas.

 

Publications:

CIEE 1992 Annual Report

CIEE 1993 Annual Report

1994 Annual Conference Program

“Research News” (newsletter discontinued. back issues available)

Various technical reports

 

Lighting Systems, Francis Rubinstein, 510-486-4096

LBL is a lead player in lighting technology development, with its extensive R&D program in advanced lighting sources, fixture design, measurement, advanced controls, and education. (A detailed list of Publications of the Lighting Group is available. 510-486-5388)

For lighting, there are many different approaches appropriate in different applications and niches. There isn’t and won’t be a single “magic bullet” new technology. Utilities need to be informed about what is available on the market but is still underutilized (e.g. adv. controls, advanced compact flourescents, etc.) There are different solutions in different niches.

The state of the art in control systems doesn’t yet permit the specifying of useable systems that will achieve energy savings. This is a subject of particular interest at LBL, which is working with the NIST sponsored effort with ASHRAE standards committee to establish the “BACKNET” building automation energy managment protocol. LBL is also working with a utility and the GSA to propose a major advanced lighting control demonstration project in a Federal building. It is the area for utilities to get involved in, as relamping and reballasting become less interesting. Note that ESCOs can count on savings from relamping, but controls are unfamiliar, and can confuse their basic proposition of assured shared savings.

Utility Retrofit Energy Efficiency Program (UREEP): a new proposed program to support utility customer service programs with integrated training and education on advanced lighting retrofit. Will provide participating utilities with practical information and comprehensive guidelines and procedures to use with their customers. A number of utilities have already expressed interest in joining. Michael Siminovitch, 510-486-5863.

Sulfur Lamp: LBL is playing a major role in development and testing. The DOE press releases last year got a lot of attention, but this is still a long way from commercial availability. Generally, high efficiency comes with high intensity, so it means that a way to distribute the light from a single point (not just a fixture) is needed, thus the light pipe configuration. Demo applications/sites will be chosen soon. Interested utilities should contact LBL: Francis Rubinstein, 510-486-4096

Tests and Measurements: LBL has unique measurement programs and equipment, and can perform tests on prototype new lighting technologies. As one example, there is no data available on the angular sensitivity of photosensors, but LBL is performing these measurements. LBL won’t permit its name to be used for commercial testimonial purposes, nor will they compete with commercial test labs.

Advanced Lighting Guidelines: 1993 is a DOE report (DOE/EE-0008) provides an overview of specific lighting technologies and design applications for energy efficient lighting. The report assesses lighting strategies, discusses issues, and explains how to obtain quality lighting design and consulting services. Each of 10 sections provide a technology overview, discussing products on the market. For use by electric utility personnel involved in lighting programs, the report is also used at FEMP training sessions. (The work was cofunded by EPRI and the Calif. Energy Commission, each of whom also published the same document under their own respective covers.)

 

[Note: The Lighting Research Center at RPI in NY conducts the National Lighting Product Information Program (NLPIP), funded by a number of utilties, EPA, DOE, and others. NLPIP publishes “Specifier Reports” and “Lighting Answers”, providing detailed technical information on commercial products. tel 518-276-8716.]

 

Energy Analysis Program, Mark Levine, Program Leader, 510-486-5238

Steve Weil, Deputy ” ” , 510-486-5396

List of Publications; Current Projects — available from Karen Olson, 510-486-5974.

• Utility Planning and Policy, Ed Kahn, 510-486-6525

Nationally recognized experts in utility industry analysis, funded by DOE Office of Utility Technology (OUT), and no utility funding. The product is “analysis”. Studies have included competition and bulk power markets, the cost of electricity from IPPs, a comparative analysis of the impact of power purchases on utility cost of capital, transmission pricing, IRP methods and case studies, industry evolution, DSM resource characterization, gas DSM and fuel switching, DSM bidding experience, “The Cost & Performance of Utility Commercial Lghting Programs”, J. Eto, etal., LBL-34967, May 94

The group takes on potentially controversial industry wide issues, and has a reputation for objectivity. An annotated publications list, and copies of the publications, are available from

Patty Juergens, Fax # 510-486-6996 or email: pajuergens@lbl.gov.

 

• International Energy & Environment Studies:

– OECD transportation analysis, energy efficiency; structure of demand in Europe and FSU; Lee Schipper

– Energy data, trends and scenarios for developing countries– Jayant Sathaye

– Global climate, developing country economics; training — Steve Weil, Mark Levine

– Energy Business Development–China, India, S. America – the politics, policies, local liaison, intelligence gathering, etc.; early stage plans to couple efficiency and power plant projects.

– Energy in China, e.g. report in preparation and workshop Fall ’95 on business opportunities for cogeneration in China; Mark Levine

 

• Energy Conservation Policy, Jim McMahon, Leader, 510-486-6049

Engineering economics of appliances. Analyze and develop appliance standards. Engineering assessments. Assess impact of standards on manufacturers; forecast sales/prices.

“Economic and Technical Analysis of US Appliance Efficiency Standards” — series of major technical support documents–DOE/EE-0009, Vol 1-3.

• Energy Efficiency Markets and Forecasts, Jon Koomey, 510-486-5974

National and regional level residential end-use forecasting model is fine-grained with respect to technologies and specific end uses. (LBL developed default data for REEPS and COMMEND). Conservation supply curves. Consumer behavior and market failures.

• Building Energy Analysis See description above (page 3).

Environmental Research, Nancy Brown, Program Leader, 510-486-4241

• Air Quality: Urban and Regional Air Pollution, Global Climate Change

(e.g. Reformulated Fuel effects study, Ammonia inventory, atmospheric aerosols, etc.)

• Combustion Research: Chemistry, mixing, diagnostics, …

Reactive Flow Modeling (reaction dynamics, rate coeff prediction, Nitrogen chemistry, reduced mechanisms, emissions inventories, turbulence chemistry interactions)

(e.g. Pollutant control, gas turbines, incineration, fire safety, health effects assessement)

• Low NOx Swirl Burner — ultra lean premix flame stabilized by weak swirl, 4-7 ppm NO, Applicable to wide range of applications, from home furnaces to large boilers and power systems. Robert Cheng, 510-486-5438

• PHOSNOX process, developed in 1990, removes NOx from Flue Gas simultaneously with SOx removal in existing wet FGD systems. NO is oxidized into more soluble NO2, by the addition of yellow phosphorus P4 to the scrubbing solution. Phosphoric acid is a recoverable byproduct. Process would be cheap and effective, but perceived safety issues have blocked further development. (Bechtel was actively promoting this for some time.) Ted Chang, 510-486-5125

• Iron Thiochelate is a more recent development addressing the same issue. The catalyst is added to the limestone in wet scrubbers to absorb NO. The catalyst is then regenerated as the bound NO is reduced to ammonia by electrochemical reduction [See Nature, v. 369, 12 May 94, p. 139.]. In mid May 95, a patent application was filed for a new simpler reduction technique, in which the liquor is passed through a column of Fe chips.

WANTED: a demo host, slip stream or pilot scale. Ted Chang, 510-486-5125

• Pozone uses yellow phosphorus in water to generate Ozone for bleaching paper pulp, and in other applications where the presence of phospate “contamination” isn’t an obstacle. International Paper is doing benchtests. Costs are estimated to be 1/2 to 1/3 (with credit for selling the phosphate byproduct) that of electrically produced ozone. Another possible application — regenerating active carbon that’s loaded with contaminants–could be done locally instead of at the very few licensed facilities. Ted Chang, 510-486-5125

• A novel catalyst offers a breakthrough in treating SO2 gas from coal-fired power plants, converting 98% of it to elemental sulfur. The Ralph M. Parsons Co. has just been granted an exclusive license. Ted Chang, 510-486-5125

Information & Computer Sciences, Stu Loken, Director 510-486-7474

This division includes both the operation of internal lab computer and information systems (technical and administrative information processing, and information services such as publications and the library) and research in information sciences, focusing primarily on network issues.

In this latter role, LBL has played a major part over the years in the formulation of the internet. In fact, TCP/IP traces back to LBL. The network research group deals with bandwidth allocation and scaling issues associated with the rapid growth in the size of the network.

The utility industry is expected to be a major player in the NII, because of the direct benefits to utilities and their customers. It’s already apparent that energy management programs and demonstrations will require such a large number of addresses on the network as to raise a problem that hasn’t really been addressed as yet.

In this light, LBL recognizes that its interactions with utilities have been too limited, and they are just beginning a process of self-education and outreach to the industry. They are looking for partners to work with them, particularly on integrating energy management equipment into network applications.

Materials Science, Joel Ager, 510-486-6715

High degree of involvement with industry, addressing fundamental materials development issues, e.g. high temperature superconductor sensors (squids), tough silicon carbide composites, ultra-hard coatings, crack-path prediction in layered structures, failure mechanism identification in nickel oxide scales (with EPRI), in-situ corrosion study of stainless steel (also EPRI).

 

The super-hard (diamond like) coatings can now be applied cost effectively on large objects (see UFTO Flash 3/21/95).

DOE Center of Excellence for the Synthesis and Processing of Advanced Materials (CSP), funded by the DOE Office of Basic Energy Science, is a network involving 12 of the major DOE labs, to support fundamental research and establish partnerships among the Labs, universities and Industry to shorten the time between development and applications. Steering Groups and a project plan exist for each of more than a 1/2 dozen topics, including Conventional and Superplastic Metal Forming, Materials Joining, Processing for Surface Hardness, and Mechanically Reliable Surface Oxides for High Temperature Corrosion Resistance, plus several dealing with microstructures. A 60 page description of the CSP is available from DOE. [I’ll obtain copies for anyone who wants one.]

 

Energy Conversion and Storage

LBL’s efforts in this arena are wide ranging, from advanced electrodes, to modeling, surface layer physics, and applied research in lithium and zinc based battery systems. There may be less of a place for direct interaction with utilities, as the work tends to emphasize research, not devices. LBL could be helpful, however, as an objective advisor to utilities about technology.

Advanced Batteries and Fuel Cells, Frank McLarnon, 510-486-4636

Berkeley Electrochemical Research Center is a world center for basic electrochemical engineering research, operated as a collaboration between LBL and UC Berkeley. It manages a substantial portion of DOE’s applied battery and EC research (the Exploratory Technology Research Program for Electrochemical Energy Storage), and provides technical guidance to research projects at other institutions around the country.

Geothermal Energy, Jane Long, Head, Energy and Resource Development, 510-486-6697

Geothermal reservoir analysis for specific sites–optimization, recharge, performance modeling, geochemistry, instrumentation, etc. Analysis tools applicable to radwaste and ground water issues.

Ground Source Heat Pumps: proposal for optimization of subsurface part of the system, effects of geology and hydrology on performance. Also, internal (“lab-directed research”) proposal to study ground-source “coolth”.

 

LBL Contacts (general phone # is 510-486-4000)

The primary contact for UFTO is:

Donald F. Grether, Deputy Division Director, Energy & Environment Division

510-486-6283

 

Technology Transfer:

Rod Fleischman, Assoc Lab Director, Industry & Government Partnerships

510-486-5134

Cheryl Fragiadakis, Head, Tech Transfer Dept. 510-486-7020

Bruce Davies, Marketing Manager, 510-486-6461

Industry & Government Partnerships, (quarterly, beginning 1/95) is a new newsletter, listing new CRADAs and licenses issued. Contact Cathy Langridge, 510-486-5894

Information Source Contacts / Technical Information Services:

 

Public Information Department: 510-486-5771

 

LBL Publications:

5 Year Institutional Plan

LBL 1994 (annual) Report to the Regents, University of California

Energy & Environment Division (contact Lila Schwartz, 510-486-4098):

Program Annual Reports:

Environmental Research

Energy Conversion and Storage

Energy Analysis

Indoor Environment Program

Buildings Technology Program

Energy & Environment Divison Newsletter, (monthly)

Energy & Environment Divison brochure (PUB-734 6/94)