Posts

DOE Office of Electric Transmission & Distribution (OETD)

Back in March, we thought announcements were imminent. (See UFTO Note ? T&D R&D Gaining Attention, 21 Mar 2003.) Little did we realize the kinds of struggles that would ensue internally in DOE over which people, programs and budgets would be won or lost by which office. The new office started its work nonetheless, judging from numerous appearances by its chief, Jimmy Glotfelty, and several planning and roadmapping meetings over the spring and summer. And the dust has settled internally.

OETD officially “stood up” on August 10, but the big August 14th blackout made for awkward timing for a press release–none has been issued. (In fact, until an appropriations bill passes, I’m told they aren’t actually officially “up”.)

A new website quietly appeared on August 21. If offers a first cut at describing the Office and its scope of responsibilities and giving links to planning documents:

http://www.electricity.doe.gov/

[This site has a good compendium of information on the blackout, however for the 12 Sept announcement of the release of a report on the events sequence, go to the DOE home page, www.energy.gov.]

**National Electric Delivery Technologies Vision and Roadmap**
There’ve been two major meetings this year, one in April and one in July. In chronological order:

~~~
April 2003 Vision Meeting Proceedings (PDF 1.1 MB)
[65 people attended, of whom only 8 represented utilities]
http://www.energetics.com/meetings/electric/pdfs/presentations/proceedings.pdf

Results of the April meeting are given in this vision document**. [The results of the July meeting will be reported in a few more weeks.]:

“Grid 2030” — “A National Vision for Electricity’s Second 100 Years,
A CALL FOR LEADERSHIP”

**DOE’s National Electric Vision Document
(Final version, July 31, 2003) (PDF 1.2 MB)
http://www.energetics.com/meetings/electric/pdfs/electric_vision.pdf

~~~
Proceedings for National Electric Delivery Technologies Roadmap,
July 8-9, 2003 (PDF 1.0 MB)
[About 20 utilities were represented, with less than 40 people out of 200 participants.]
http://www.energetics.com/meetings/electric/pdfs/proceedings.pdf

~~~
Glotfelty’s kickoff presentation July 8:
“Transforming the Grid to Revolutionize Electric Power in North America”
http://www.electricity.doe.gov/documents/glotfelty roadmap opening 07 08 03.pdf

~~~~~~~~~~

No personnel are identified on the new website (other than Gotfelty and Bill Parks, Assistant Director), and no org charts shown. The most complete descriptions of the programs appear in a series of factsheets:
http://www.electricity.doe.gov/documents/
http://www.electricity.doe.gov/documents/OETD_factsheet.pdf

The work of OETD follows these earlier developments: (see reliability program materials at http://www.eere.energy.gov/der/transmission/)

— The National Energy Policy (May 2001) calls for the Department of Energy to address constraints in electric transmission and relieve bottlenecks.

— The National Transmission Grid Study (May 2002) contains 51 recommendations for accomplishing the President’s National Energy Policy and speeding the pace of the transition to competitive regional electricity markets.

— The Transmission Grid Solutions Report (September 2002) provides guidance for priority actions to address congestion on “national interest” transmission corridors.

OETD conducts research in several areas:
–High-Temperature Superconductivity
–Electric Distribution Transformation
–Energy Storage
–Transmission Reliability

One participant at the July meeting told me he thought that DOE seems to be in the thrall of superconductors and other mega-technology solutions, and giving short shrift to distributed generation, microgrids, and other common sense approaches.

As for budget, through the end of Sept (FY03), OETD is operating on funds already committed to the programs that were brought in. Of roughly $85 Million in FY’03, high temperature superconductors have $40 M, and $27M was subject to Congressional earmarks. The FY04 budget request has a new line item for electric power infrastructure, and hopefully will provide more resources in FY05) explicitly for transmission reliability. Another observer said that the future program will be more balanced as a result.

The R&D plan is based on a 3-level architecture:
1. “Supergrid”, or coast to coast backbone for power exchange. (superconducting)
2. RegionGrid
3. CityGrid, ultimately involving fully integrated 2-way power flow, microgrids, etc.

Planning and analysis tools are needed at all 3 levels. The Supergrid is a longer term goal, operational perhaps in 10-15 years. Other near term elements include sensors, storage, and DC systems.

T&D R&D Gaining Attention

Here are some high-level pointers to an array of resources related to ongoing developments in T&D research, sponsored by DOE, NSF and the CEC (Calif Energy Commission), which demonstrate a new level of attention to grid reliability and security.

Let me know if I can be helpful digging deeper into any of these areas.

~~~~~~~~~~~~~~~

DOE – Office of Electricity Transmission and Distribution

The Dept. of Energy will announce, perhaps as early as next week, the creation of a new office for T&D reporting directly to the Secretary, as recommended in the National Transmission Grid Study* done last year. The Office of Electricity Transmission and Distribution will start with a budget of $85 million, however all but $8 or 9 million is already committed to earmarks ($27 M) and high temperature superconductors ($40 M). The office will be headed by Jimmy Glotfelty, an assistant to Abrahams. The staff currently in the Transmission Reliability Program in EERE will move over to the new office.

Meanwhile next week, a new Center will be dedicated at Oak Ridge:
http://www.ornl.gov/ORNL/Energy_Eff/nttrcdedication.htm

The dedication of the National Transmission Technology Research Center (NTTRC) and the Powerline Conductor Accelerated Facility (PCAT), the first working facility of four planned for the Center, will be held March 25. The Center, sponsored by ORNL, DOE, and TVA, will test and evaluate advanced technologies, including conductors, sensors and controls, and power electronics, under a wide range of electrical conditions without jeopardizing normal operations. The first component of the NTTRC, the PCAT facility, is initiating its first test protocol with 3M’s advanced Aluminum Conductor Composite Reinforced conductor.
— Overview of NTTRC:
http://www.ornl.gov/ORNL/Energy_Eff/PDFs/NTTRCoverview.pdf

The existing Transmission Reliability Program was reestablished by Congress in 1999 to conduct research on the reliability of the Nation’s electricity infrastructure during the transition to competitive markets under restructuring.

http://www.eere.energy.gov/der/transmission/
Go to “Documents and Resources” for recent studies and materials.

*(May 2002 http://www.energy.gov/NTGS/reports.html)

~~~~~~~~~~~~~~~

Calif Energy Commission

The CEC Public Interest Energy Research program (PIER) has a very active effort underway in Transmission Research. They recently released a 140 page “Electricity Transmission Research and Development Assessment and Gap Analysis – Draft Consultant Report” — now available online along with other materials and presentations:
http://www.energy.ca.gov/pier/strat/strat_research_trans6.html

This report is one of two reports which were discussed at a public workshop held March 12, 2003 at the CEC.

~~~~~~~~~~~~~~~

National Science Foundation
Directorate for Engineering, Elec. And Communications Systems
http://www.eng.nsf.gov/ecs/

1. Workshop on Modernizing the Electric Power Grid, Nov 02
— http://eent1.tamu.edu/nsfw/index.htm

Starting on slide 14 of James Momoh’s presentation there is a good overview of the EPNES initiative (next item)
http://eent1.tamu.edu/nsfw/documents/Presentation_JMo.ppt

2. NSF/ONR Partnership in Electric Power Networks Efficiency and Security (EPNES)
http://www.nsf.gov/pubs/2002/nsf02188/nsf02188.htm

This solicitation seeks to obtain major advances in the integration of new concepts in control, modeling, component technology, social and economics theories for electrical power networks’ efficiency and security. It also encourages development of new interdisciplinary research-based curriculum… Proposals were due Feb 3.

3. The Power Systems Engineering Research Center (PSERC)
PSERC is an NSF Industry/University Cooperative Research Center, involving a consortium of13 universities working with government and industry. The website has a huge array of reports and publications.
http://www.pserc.wisc.edu/

For the NSF’s “fact sheet”, see:
http://www.nsf.gov/pubs/2002/nsf01168/nsf01168ee.htm

Gridcom Powerline Sensors

A remarkable new type of low cost and easily installed intelligent powerline sensors are nearing commercial readiness. They come in three flavors:

– Medium Voltage Single Phase Overhead (4 – 69 KV)
– Medium Voltage Single Phase Underground
– Low Voltage Single and Multi-phase Underground (e.g., 208 V)

The medium voltage devices simply clamp on the cable, and measure voltage and current without a connection to ground or a phase-to-phase connection. There is no penetration of cable voltage insulation. (It is not applicable to coax or multiple conductor configurations–only single unshielded cables.) The underground units are self-powered by the power line, and the overhead ones use batteries that will last 5 years or more.

They are said to be approximately ten times cheaper to buy and install, and offer far greater capabilities than anything else on the market. Measurement accuracies (I, V, P) are quoted at better than 3%, though the units invariably do much better. It is not a revenue meter, however.

Evaluation units are available now, and the first production units will be ready before the end of the year. Five utilities (including one or two UFTO companies) have been testing overhead sensors.

The sensors measure current and voltage and can be equipped to measure and/or detect a number of additional conditions or quantities including temperature, moisture, specific substances, light, acceleration, and vibration. Underground sensors utilize two-way powerline carrier communications over the existing lines and overhead sensors communicate through two-way low power RF systems.

Each sensor has its own local on-board intelligence to perform data processing and analysis. In typical applications the sensors calculate true rms voltage and current, power factor and harmonic content. Peak rms quantities and fault recognition capabilities can also be employed.

The sensors report by exception, when polled, or at determined times. Since data is processed at the sensors, communications bandwidth requirements are relatively low. Only processed data or observed data related events (like faults, voltage dips, or high current limits) are reported — not extensive strings of raw data.

Typical functions of these sensors (both overhead and underground) include:

– Detection and location of faults
– Measurement of power quality
– Identification of grounding and cable insulation issues
– Detection of non-technical losses
– Detection of unanticipated loads
– Confirmation of recloser, sectionalizer and other switch operations
– Support capacitor switching algorithms
– Monitoring distributed generation

APPLICATIONS

Infrastructure Monitoring
– Distribution Automation
– Operations Support
– Fault Detection, Classification and Location
– Power-line losses
– Power Factor and VAR Monitoring
– Switch Operation Confirmation
– Planning Studies
– Circuit Design

Condition Based Maintenance
– Cable Burnout and Circuit Limiter Detection (low voltage U/G)
– Equipment Health Status (Fuse, Cutout, Transformer, Switch)
– Tree Trimming Effectiveness

Beyond the Meter Services
– Power Quality
– Sub-metering and Beyond-the-Meter Distribution Networks
– Harmonic Analysis

The underground sensors were initially developed for Consolidated Edison’s Secondary Underground Network Distribution Automation System (SUNDAS). The objective was to develop a comprehensive sensing system that would be relatively inexpensive to purchase, install, operate and maintain.

Con Ed has tested experimental versions of the low voltage underground sensors in their Battery Park City and Harlem networks. These tests demonstrated the capabilities of these sensors to monitor powerline conditions and to detect variations in line conditions associated with circuit limiter loss, arcing faults, changes in network protector relay status and unusual changes in power flow patterns. Based on the performance of the experimental sensors, Con Edison will install GridCom sensors throughout the Hunter network with installations beginning this fall.

US Patent No. 5,892,430: Self-powered powerline sensor
The company’s website has a lot of information and pictures:
http://www.gridcom.com

Contact: Rich Wiesman, 781-684-4387 rwiesman@foster-miller.com

Clean Power Road Map

Clean Power Generation Technologies Road Map

DOE is embarking on a series of vision setting and planning exercises that may significantly impact the direction of Federal research. These “Roadmapping” exercises are underway or planned in the areas of environmental management, fossil energy and energy efficiency/ renewable energy programs, as well as other selected programs within the Office of Energy Research.

The “Clean Power Generation Technologies Road Map” will examine a full range of production options, plus end-use efficiency, power transmission and distribution and the effect of regulatory structures. The effort spans both fossil and efficiency divisions of DOE, to help government and industry to: – determine the technology requirements to produce clean, affordable, and reliable power generation options – identify the federal, state, and industry roles in technology development, and – define the timing of needed RD&D investments over the next several decades.

The road map is to cover all fuel forms, conversion and enabling technologies (e.g. storage), and waste streams and effluents related to stationary power generation, including both central and dispersed generation, and co-production of electricity with steam, fuels, chemicals and gases. In light of climate concerns, a long term view will reach to 2100, with emphasis on the 2020-2050 time frame.

The road map is due to be completed in 2Q 1999. Initial work will be by a core group of about 12 persons, who will develop the overall vision and “destinations”, and oversee the roadmap process. The first “visioning workshop” meeting of the core group will be held in Washington on June 10-11. A select group of senior executives from utilities and IPPs have been invited (Duke, AEP, SMUD, Enron, Trigen, Onsite, Edison Int’l, Calif Energy Commission). At this stage, DOE wants only top level people to attend (CEO’s, Sr. VPs, etc.) and not lower level representatives.

Participation will be broadened to other groups later on, in a series of RD&D planning workshops. Drafts will be circulated for comments.

Initial Implementation Team:
– Victor Der (Fossil Energy) 301-903-2700, victor.der@hq.doe.gov
– Doug Carter (Fossil Energy) 202-586-9684, douglas.carter@hq.doe.gov
– William Parks (Energy Effic/Renew) 202-586-2093, william.parks@hq.doe.gov
– Joe Galdo (Energy Effic/Renew) 202-586-0518, joseph.galdo@hq.doe.gov
– Trevor Cook (Nuclear Energy) 301-903-7046, trevor.cook@hq.doe.gov
– Gil Gilliland (Oak Ridge) 423-574-9920, ig7@ornl.gov
– **Richard Scheer (Energetics, Inc.) 202-479-2748, rscheer@energeticsinc.com
**suggested point of contact

(See New Technology Week, March 2, 1998 for additional background).

Note: Due to the potential impact on national research priorities, UFTO companies should be aware of these planning exercises and may want to offer their input and participation at the appropriate time. I am in contact with the organizers, and they are aware of our interest.

Technology Transfer Opportunities – Wright Laboratories

UFTO

PROPRIETARY

Final Report

Technology Transfer Opportunities in the Federal Laboratories

Wright Laboratories

U.S. Air Force

Dayton OH

February 1998

Prepared for:

Utility Federal Technology Opportunities (UFTO)

By:

Edward Beardsworth

Consultant

This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities

 

Contents:
page
1. Summary
1 Overview & Organization
3. Technologies & Programs

This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.

Summary

This report details findings about technology and technology transfer opportunities at the Wright Laboratories that might be of strategic interest to electric utilities. It is based on a visit to the lab in June 1997 and subsequent contacts, as part of the UFTO multiclient project.

Background

Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, the UFTO program has been established as a multi-client study of the opportunities thus afforded energy utilities and their many subsidiaries.

Air Force Research Laboratory

In a major reorganization just put into effect in mid 1997, all the Air Force R&D activities were brought together into one single entity called the Air Force Research Laboratory.

From the AFRL website: http://www.afrl.af.mil/

———————

The mission of the Air Force Research Lab is to lead the discovery, development, and transition of affordable, integrated technologies for our air and space forces — to keep our Air Force "the best in the world." Our mission is executed by our nine technology directorates, located throughout the United States; the Air Force Office of Scientific Research; and our central staff. Our partners include universities and industry, with whom we invest almost 80% of our budget, and our customers include the Air Force major commands, who operate and maintain the full spectrum of Air Force weapon systems. We are a full-spectrum laboratory, responsible for planning and executing the Air Force’s entire science and technology budget: basic research , applied research, and advanced technology development. The work is done at facilities all across the country (Wright-Patt, Kirtland, Brooks, Edwards, Eglin, Tyndall, Bolling, Hanscom, Rome).

The AFRL is made up of more than 6400 government people, which includes over 1500 military and over 4800 civilian personnel. We have about 3500 scientists and engineers, of which over 800 have PhDs.

———————

Budgets and staffing of research groups and facilities are relatively stable over time, as the Air Force regards its research capability as vital to the conduct of its overall mission, and takes a long view of its future technological needs.

• Technology Transfer

The Air Force, like all of DOD, has a strong commitment to Tech Transfer, and like DOE and other agencies,has a wide latititude of contracting mechansims and ways of working together with private industry and academia. One of the primary motivations for working with the commercial sector is to enhance the capabilities of private industry so as to lower costs to the Air Force of the high-value manufactured items they need.

The AFRL operates Tech Connect, the main point of contact for tech transfer for the entire Air Force. It provides search and contact services and facilitation.

In addition, each operating location (not just labs) have their local point of contact or ORTA (Office for Research and Technology Application).

To contact TECH CONNECT

Call – (937) 656-2530 Toll Free (800) 203-6451 FAX (937) 656-2138

Web site — http://tto.wpafb.af.mil/tto/techconn/index.htm

Wright Labs Overview

Wright Laboratories, located at Wright Patterson Air Force Base, Dayton OH, is oldest and largest of the Air Force research laboratories, with a history stretching back to 1917.

Wright Labs is headquarters for a number of Directorates (e.g. armament, avionics, flight dynamics, etc.).

Propulsion Directorate http://www.pr.wpafb.af.mil/

One of these, the Propulsion Directorate, has the highest relevance for utilities.

The Propulsion Directorate’s work has many potential non-aerospace and commercial uses in:

– Materials and Materials Application
– Measurement and Sensing
– Modeling and Visualization
– Energy and Power

With an annual budget of about $150 Million, and about 300 mostly technical and scientific personnel, its technical divisions are:

Division – Office Symbol (Primary Site/Secondary Site)

– Power Division – AFRL/PRP (WP)
– Propulsion Sciences and Advanced Concepts Division – AFRL/PRS (Edwards/WP)
– Turbine Engine Division – AFRL/PRT (WP)
– Rocket Propulsion Division – AFRL/PRR (Edwards)
– Integration and Operations – AFRL/PRO (WPAFB/Edwards)

Principal Point of Contact: Kristen Schario, 937-255-2131, scharika@wl.wpafb.af.mil

Power Division http://www.pr.wpafb.af.mil/divisions/prp/prp.html

The Power Division plans, formulates, manages and executes research, exploratory and advanced development programs in energy conversion and storage, and power generation, transmission, conversion, and thermal management. This includes electrical, mechanical, thermal, and fluid power for aircraft, missile, terrestrial, and special Air Force applications.

Technologies & Programs

Covered in this report:

Page
• More Electric Aircraft (MEA) 4
Power generation
Power systems and distribution components
Passive components – Capacitors
Power electronics/motor drives
• Ground Power 4
Remote Small Scale (10-120 watts)
Cryogenic Lightweight Deployable (1-4 MW)
• Turbine Compressor Research Facility 8
• Electronics Cooling
• Mechanical Testing of Electrical Machinery
• Silicon Carbide High Power Electronics
• Superconductors, Cryogenic Power Electronics
• Batteries 4
• Lubrication Technology 4

• More Electric Aircraft (MEA)

Contact: Maj. Michael Marciniak, 937-255-6226, marcinma@wl.wpafb.af.mil

The Air Force has a major effort on the "More Electric Aircraft" (MEA), from which many "dual-use" applications arise. As with the more electric ship and tank, the PNGV hybrid/electric vehicle efforts share many common requirements and opportunities.

The goal of MEA is to replace hydraulic and pneumatic systems, which account for more than 1/2 of all downtime and failres of fighter aircraft, with electrical ones. A wide range of technologies are involved, including actuators, electronics cooling, motor/alternators, supercapacitors, batteries, power system controllers, and high power semiconductor devices.

The MEA will require a highly reliable, fault tolerant, autonomously controlled electrical power system to deliver high quality power to the aircraft’s loads. Also, reliable high power density motors and motor drives ranging from a few horsepower to hundreds of horsepower will be required

Military aircraft have numerous subsystems powered by one or more sources of secondary power: hydraulic, pneumatic, electrical and mechanical. Secondary power is typically extracted from the main engines mechanically by a driven shaft and pneumatically by bleeding the compressor. Mechanical power is distributed to a gearbox to drive lubrication pumps, fuel pumps, hydraulic pumps and electrical generators. Pneumatic power typically drives air turbine motors for engine start systems and environmental control systems. Electrical power and hydraulic power are distributed throughout the aircraft for driving subsystems such as flight control actuators, landing gear brakes, utility actuators, avionics, and weapon systems.

Recent and projected advancements in aircraft electrical power system and component technologies have resulted in renewed interest in the MEA. For example, hydraulically driven actuators would be replaced by electric motor driven actuators, gearbox driven fuel and lubrication pumps would be replaced by electric motor driven pumps, and a pneumatically driven compressor for environmental control would be replaced by an electric motor driven compressor. Studies on two different military fighter aircraft have shown that the MEA concept provides significant reliability, maintainability and supportability payoff.

There are four major technical thrusts in the roadmap: (1) power generation, (2) power systems and distribution components, (3) passive components, and (4) power electronics/motor drives

Power Generators — Independent Power Units (IPU)

A High Reliability Generator was developed from a conventional 400 Hz Variable Speed Constant Frequency (VSCF) system to a dual output (270 VDC and 400 Hz) system capable of supporting the near-term MEA.

The Switched Reluctance Starter/Generator program developed the preliminary design for a 375 KW, 270 VDC switched reluctance starter/generator in which the electrical machine is integrated internally with an advanced gas turbine engine.

A smaller 250 KW unit was built and tested to demonstrate the critical technologies. The switched reluctance starter/generator system offers a robust, high temperature, fault tolerant solution for the environmental demands of the turbine engine and the performance demands for the MEA.

Feasibility is based upon recent advancements in power electronic component technologies, high temperature wire insulation, and high temperature, high strength magnetic materials. The power electronic inverter is essential to the system since it provides the means to excite and process power to and from the unit. An Electro-Magnetic Interference (EMI) filter will reduce unwanted frequency components.

These systems are directly applicable to ground applications. In fact, Allied Signal is the contractor, which no doubt contributes to their civilian microturbine program.

In another development, an internally integrated 375 KW Starter/Generator for large aircraft enginees will include the critical step of eliminating the engine gearbox and aircraft mounted accessory drive. Integration into the gas turbine engine is enabled by high strength, high

temperature permanent magnet materials (cobalt-iron) and reliable high temperature wire insulation.

Power Systems and Distribution Components

The MEA will need a highly reliable, fault tolerant, autonomously controlled electrical power system to deliver high quality power from the sources to the load.

There are several challenges in designing an electrical power system for a MEA. Total onboard power requirements will be much greater, ranging as high as 1-10 MW per aircraft. It adds substantial amount of high power dynamic motor loads which could impact power quality. Most of these loads will have a low input impedance "capacitive" EMI filter which could present an in-rush current problem. Some MEA loads such as flight control actuators could provide regenerative energy back to the power distribution system.

Most important, these loads are flight critical, and loss of power to these loads could result in the loss of the aircraft. Thus, the performance and integrity of the power distribution system becomes a critical network which links sources to loads.

Presently, the Air Force has two programs for power systems and distribution components for the MEA.

– Power Management and Distribution for More Electric Aircraft (MADMEL) program
– Remote Terminal utilizing 270 VDC Solid State Power Controller program.

Future programs include development of: (a) high current (>50 ampere) intelligent power controllers and contactors that provide control, protection, and status feedback. (b) smart, overcurrent, differential current, and ground fault protection systems, (c) arc detection circuits to trigger protection devices in the event of an arc. (d) highly reliable and rugged connectors and interconnect components.

Passive Components – Capacitors

— Contact: Sandra Fries-Carr, 937-255-6016, carrsj@wl.wpafb.af.mil

State-of-the-art aircraft capacitors are considered to be the weakest link in power electronic systems. They are also large, heavy and lossy. This is a real concern for the MEA since 100s to 1000s of capacitors will be required for filtering and energy storage. The Air Force is pursuing several organic and inorganic capacitor technologies under contract that promise improvements in reliability, size, weight, and electrical and thermal performance.

Foster-Miller Corp. was awarded an SBIR contract to examine the application of PBZT polymer film for capacitors. This film demonstrated dielectric strengths as high as 100,000 Volts/Mil and low dissipation factor at high temperatures (up to 300*C). A follow-on SBIR contract to Foster-Miller further developed the PBZT film to make highly reliable, high energy density capacitors with operating temperatures to 300*C.

Westinghouse Science and Technology Center was under contract to develop and demonstrate high temperature (>200*C) AC and DC filter capacitors using a FPE polymer film from 3M Corporation. The capacitors were tested with a Variable Speed Constant Frequency (VSCF) generator system and demonstrated over 2000 hours of trouble free operation at 225*C.

Olean Advanced Products, Division of AVX Corporation is under contract to develop multilayer ceramic capacitors with increased operating temperature (up to 300*C) and reduced dissipation factor over a wide frequency and temperature range. Ceramic capacitors offer tremendous volumetric density compared to other capacitor technologies.

Wright Labs, in-house, is using low temperature RF sputtering to make very thin film ceramics (600 angstroms) which can be put directly on a circuit board.

Ultra high energy density pseudo capacitors have been developed, demonstrating energy densities over 11 Joules/gram and possibly as high as 30 J/g. An inexpensive device about the size of a quarter, weighing 6 grams, is rated at 5 farads at 5 volts. These are use in burst power and other aircraft and civilian applications, and can be stacked to the 1 KV level.

Diamond Thin Film Capacitors

The Air Force is conducting an in-house research program to investigate the possibility of using diamond-like carbon and polycrystalline diamond films as dielectric materials for capacitors. Diamond has the highest thermal conductivity of any material known and a very high dielectric strength, electrical resistivity and operating temperature capability. Wright Labs has made thin films using microwave plasma-enhanced chemical vapor deposition that have very stable performance over a wide temperature range. Capacitors continue to work well at 600 deg C, with a power density of 7 Joule/gram.

The Air Force has recently awarded several contracts to investigate other promising dielectric materials and construction techniques for capacitors. This includes silicon carbide, barium titanate, and multi-layer diamond capacitors.

Power Electronics and Motor Drives

— Contact: Clarence Severt, 937-255-6235

Advancements in power semiconductor devices, capacitors, and integrated circuits for control has enabled high density, reliable power electronic and motor drive systems that are essential for the MEA. These include generators, battery chargers, DC to AC inverters, and DC to DC converters, and motor drives, which provide the interface between the electrical power system and the motor.

To date, the Air Force has focused on MOS Controlled Thyristor (MCT) switching device and the MCT driver. Future work will center on Application Specific Integrated Circuit (ASIC) technology for motor drive controls and the development of advanced drives for induction, permanent magnet, and switched reluctance motors.

In September 1986, the Air Force awarded a contract to the General Electric Corporate Research and Development Center to develop a high power MCT device. At that time, GE had only demonstrated a small MCT device capable of a few Amps and a 200 Volts. The objective of this contract was to develop and demonstrate a high power device (with several orders of magnitude increase in power handling capability) that would be applicable to aircraft power conditioning. The goal was to develop a 150 Ampere 900 Volt device capable of high speed operation (200 nanosecond turn-on and 1 microsecond turn-off capability), low forward voltage drop (1 Volt) and high temperature capability (>200*C junction temperature).

Later in the contract, an integrated circuit driver chip was developed that provides an interface between logic control signals and the gate of the MCT. This program was successful in meeting its goals, and several hundred first generation MCT devices and driver circuits were produced, with significant performance improvements as well as size and weight reductions when compared to bipolar junction transistor technology available at that time.

A second contract was awarded to GE to make the MCT an acceptable and preferred device for military weapon systems such as the MEA. This contract is focused on advanced hermetic packaging, radiation hardening, and symmetrical voltage blocking for AC applications. Also improvements to the MCT are being investigated which offer improvements in peak current turn-off capability and current density.

———————————————————-

Ground Power

Remote Small Scale (10-120 watts)
— Contact: Tom Lamp, 937-255-6235, xxxx@wl.wpafb.af.mil

The Air Force has over 80 remote sites in Alaska that need ultra high reliability power sources in the 10-30 watt range, for sensor systems, to 120 watts. Most are equipped with thermoelectric generators (TEG) that operate on propane, with some photovoltaic. The transportation costs run to $30-40 per pound of fuel, so the low efficiency of TEG, typically about 5%, is obviously a concern. Requirements are unattended operation, low health and safety risk to local population and Air Force personnel, and low environmental risk. Installation must be quick, by heliocopter drop-in. Weather conditions are very extreme.

But for the social outcry that would result, RTG’s are the obvious best choice (radionuclear thermal generators–as used on space missions). Other mature technologies include batteries, fuel cells, wind and engines, none of which meet the objectives.

Other choices are Stirling, Thermionic, Thermophotovoltaic, and AMTEC, all of which are small scale heat-to-electricity conversion devices with higher efficiency than TEG.

Stirling is under development by NASA for slightly larger systems (350 watts), and DARPA is funding some work on TPV and AMTEC ( a 500 watt compact system for the Army).

For the Alaska sites, the conclusions are that AMTEC and Stirling are the best candidates. Work is underway to develop prototype systems, building on the work done for space power systems. Commercial applications could include gas metering, navigation stations, weather monitors, and cathodic protection.

Cryogenic Lightweight Deployable (1-4 MW)
— Contact Jerry Beam, 937-255-6226

The Air Force needs lightweight deployable power plants to support, as one example, ground based radar (GBR) systems. Conventional technology and it’s supporting infrastructure is larger and heavier than wanted, and one of the Air Force’s key goal is to reduce the "logistics tail" whenever possible. A study showed that the conventional GBR plant with 5 semi-trailers and 140 cubic meters in volume, could be reduced to 2 trailers by the use of a superconducting cryogenic power generator. Since the radars already need cryogenic support, this is not an additional requirement, and the size and efficiency gains are significant. A prototype system will be tested in 2000, and could be in the field by 2005.

Turbine Compressor Research Facility (CRF)
— Contact: Mark Reitz, 937-255-6802

The CRF is a major facility for conducting tests and evaluations of full scale multi stage and single shaft fans and compressors for gas turbine engines. Extending over four buildings, it is capable of 30,000 hp at speeds to 16,000 rpm, and 15,000 hp from 16 to 30,000 rpm. It can create steady-state and transient phenomena on full size test articles under conditions that are similar to those of actual operation. It has been used for many advanced turbine development programs to evaluate fans and core compressors.

Solar Turbines, Inc. is developing gas fired turbine engines for cogeneration and industrial drive applications in industry, under a CRADA with DOE’s advanced turbine program. The compressor for this engine is now under test at the CRF to identify any possible design deficiencies. This is the first major commercial use of the CRF.

Electronics Cooling
— Contact John Leland, 937-255-2922

Cooling of power electronics is particularly important as systems become more compact and powerful. Anticipating cooling requirements up to 600 W/sq cm, a number of initiatives at the Lab include:

— testing performance of heat pipes in aircraft-type environments, e.g. under acceleration and vibration. Contact Kirk Yerkes, 937-255-6241
— integration of direct spray cooling into a 270 V 400 A single phase inverter, leading to a reduction in size of 10X. Direct immersion, jet impingement and flow boiling are also receiving attention. Contact Brian Donovan, 937-255-6241
— Venturi flow cooling is another technique under consideration

Mechanical Testing of Electrical Machinery
— Contact Tim Young
— Characterization of soft magnetic materials at higher speeds and temperatures encountered in IPU’s
— Windage in generators can become a significant power loss (as much as 30-40%) at high RPM due to viscous air losses.

Silicon Carbide High Power Electronics
— Contact: Clarence Severt, 937-255-6235

Compared with silicon, Silicon Carbide semiconductors have 3 times the band gap, and a operating temperature range reaching 4-600 deg. C, compared with 125 deg. C for silicon. It also has higher breakdown strength, which can mean thinner devices. Also, increased circuit efficiencies can reduce heat loads as much as 5X.

The main obstacle to using SiC in power electronics is the difficulty in making it without defects. "Micropipes" form too easily as the material is built up by vapor deposition.

The Air Force program has focused on development of high quality semiconductor grade material, improving on both wafer size and defect rates, for an aggressive development effort for power electronic devices. They have set a goal to demonstrate a 100-amp 600-V 572 deg F SiC switch by the year 2002.

For the power industry, discussions were well along with EPRI last year on possible cofunding of several device programs, but EPRI backed out. No new initiatives have come forward since.

——press release by CREE Research, one of the key developers in this program——–

Cree Unveils New Product Offerings for Silicon Carbide Wafers 40% Reduction in Micropipe Densities on Silicon Carbide Material

(Durham, NC May 27, 1997) Cree Research Inc. [NASDAQ: CREE] today announced that it has made tremendous progress in its efforts to reduce micropipes within its silicon carbide (SiC) material. Cree will now offer its 4HN type SiC wafers with reduced micropipe densities (MPD) and graded to three categories. The low grade will have a maximum of 30 micropipes/cm2, which represents a reduction in MPD of 40%. A new select grade will be added, which will have a range of 31 to 100 micropipes/cm2. In addition to Cree’s low and select grades, the standard grade will have a range of 101 to 200 micropipes/cm2. This represents a reduction in MPD of 50%.

Christer Ovren, Director of Silicon Carbide Device Development at Asea Brown Bovari (ABB), commented that "Cree continues to lead the world in making lower micropipe substrates available for the research and development of next generation devices. This latest advance is another step forward in maturing the manufacturing process for silicon carbide technology." ABB has purchased SiC wafers from Cree for a number of years.

These reduced micropipe densities are a result of Cree’s continuous commercialization of its SiC material technology. Cree expects this technology breakthrough to enable SiC material for more applications and improve device performance of existing applications. North Carolina based Cree Research, Inc. is the world leader in the development of silicon carbide-based semiconductors which have potential advantages in certain optoelectronic, RF and microwave, power, and high temperature applications. Cree owns outright or licenses exclusively 40 patents related to its process and device technology.

————————————————————————-

Superconductors, Cryogenic Power Electronics
— Contact: Charles Oberly, 937-255-4814

As noted above, cryogenic systems can have dramatically improved efficiency, size reduction, and performance as compared with standard counterparts. Power conversion efficiency of an alternator/motor, for example, can reach 99%, including the refrigeration needed, compared with 92% for conventional copper based components. Wright Lab is developing both the high temperature SC materials and designs for generators, motors, actuators and power transmission lines.

Perhaps less well recognized, cryogenic cooling (i.e. to liquid Nitrogen temperatures) dramatically improve the performance of standard commercial solid state electronic components. Devices such as MOSFETS exhibit significantly reduced heating and faster switching. Ceramic capacitors have lower losses and higher capacitance when cooled.

Batteries
— Contact Steve Vukson 937-255-7770, Dick Marsh

Aircraft battery systems are a major concern, particularly in regard to weight, reliability and maintenance. For example, vented NiCd battery maintenance costs are $3000/yr for each battery, amounting to $1/2 billion over a 20 year period. Wright Labs has developed a maintenance-free sealed NiCd cell technology, which uses low cost separator materials and which they’ve married with a microprocessor-based smart charger. These new systems will eliminate all scheduled maintenance costs, and also to save another $1/2 billion by reducing flight mission interruptions.

The bulk of the Lab’s battery program budget is devoted to advanced lithium polymer technology, doing work in molecular engineering in cooperations with Cornell, Berkeley and other academic institutions. The program has demonstrated prototype rechargeable lithium batteries with energy densities above 80 W-Hr/kg.

Thermal batteries are a special class of one-shot primary batteries used in weapons systems to deliver a large burst of power, very reliably, after waiting as long as one or two decades. Sandia National Lab is also well versed in this technology. ( –Would this have a useful role to play in nuclear power plant emergency systems?)

Lubrication Technologies
— Contact Bob Wright, 937-255-4230, wrightrl@wl.wpafb.af.mil

This separate branch provides field support, development and advanced technology research. Their services to the Air Force include comprehensive testing facilities, bearing systems development, lubricant testing, magnetic bearings, etc.

For lubricants, increasing operating temperatures and longevity of lubricants are ever present goals. Some state-of-the-art compounds (polyphenyl ethers) have higher temperature capability but cannot be used below 40 deg. F, an obvious limitation for tactical systems. Others (perfluoro ethers) perform extremely well over a wide temperature range, but degrade quickly leading to corrosion. The overall paradigm is shifting from use of bulk oils to vapor phase lubricants, soft magnetic materials, and expendable coatings, although conventional ester lubricants are still foreseen to be the mainstay of aviation lubrication for some time to come. Meanwhile, integration of on-engine (on-line) oil condition diagnostics is an important theme. Off-line diagnostics are effective, but not optimal. This is a vital issue, as lubricant systems are implicated in 1.5 aircraft losses per year.

Magnetic Bearings — The Lab has a major development program, foreseeing big opportunities in engines to do active rotor dynamics control, increase temperature, do active control of compressor stability and blade tip clearance, and to have less logistics and better real time diagnostics.

On-line spectrometer — The Lab is sponsoring development of a very small infrared spectrometer for on-line oil analysis. The device measures the condition of the basestock and additives, and can detect the presence of unwanted contaminants, such as water, fuel, glycol, or wrong oil type.

——————–

"RULER" — Remaining Useful Life Evaluation Routine — off-line test system measures antioxidant levels in lubricants quickly and accurately by "voltammetric analysis". Results enable operators to determine remaining useful life of lubricants in less that a minute. RULER System consists of an "RULER" — Remaining Useful Life Evaluation Routine — off-line test system measures antioxidant levels in lubricants quickly and accurately by "voltammetric analysis". Results enable operators to determine remaining useful life of lubricants in less that a minute. RULER System consists of an instrument with probe, R-DAS (RULER Data Acquistion Software) pre-installed on a desktop or laptop computer. RULER System cost about $15,000. Proprietary solvents are used in the tests.

The RULER was originally developed at the University of Dayton Research Institute for Wright-Patterson Labs, for quick tests on aircraft oils between missions. It is manufactured by Fluitec Ltd., based in Dayton, OH with operations in Brussels. RULER customers cover a large range of industries world wide in oil, additive, manufacturing plants, power generation, aerospace and fleets. It’s applied to turbine, hydraulic, synthetic, working fluid, IC engine, and even biodegradable oils.

Contact: Lawrence Contreras, Fluitec, 937-223-8602, lcontrerasjr@juno.com

Reliability TF draft Interim Report

Subject: UFTO Note – Reliability TF draft Interim Report
Date: Fri, 11 Jul 1997 11:12:59 -0700
From: Ed Beardsworth

— advance copy just received from contacts at DOE —

————————————————————–
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675
| http://www.ufto.com edbeards@ufto.com
————————————————————–

—————————————-

The attached file contains a draft Interim Report that will be discussed and marked up at the July 23 – 24 meeting of the Secretary’s Electric System Reliability Task Force.

Please note that this draft has not yet been reviewed by the Task Force members.
—————————————–

DRAFT

Dr. Walter Massey
Chairman, Secretary of Energy Advisory Board
c/o Morehouse College
830 Westview Drive, SW
Atlanta, Georgia 30314

Dear Dr. Massey:

The Task Force on Electric System Reliability of the Secretary of Energy’s Advisory Board is writing to provide you interim comments on several issues important to the maintenance of reliability. Although the Task Force has not yet completed its deliberations under the Secretary of Energy Advisory Board’s Terms of Reference, its members are aware that the Department and the Administration may be making decisions on these issues and we want to be as helpful as possible.

As you know, the 24-member Task Force is a diverse group representing, for example, electricity producers, marketers, state agencies, consumers, environmental advocates, reliability organizations and academia. Not surprisingly, with such differing perspectives on changing and complex issues, it is not easy for the group to rapidly reach a consensus. Naturally, not every member agrees with every detail of this report.

We certainly all do agree, however, that the maintenance of system reliability must be a high priority and that the mechanisms for ensuring reliability must be changed to accommodate the changing electric market.

Since its establishment in January, 1997, the Task Force has convened in four open meetings. Thus far, we have focused primarily on issues relating to the bulk power transmission grid and in particular security issues—that is, questions about the operation and maintenance of that system–rather than the adequacy of supply or generation. We will be assessing a number of additional issues at future meetings.

The Task Force appreciates the opportunity to provide the Department with this Interim Report and respectfully submits the preliminary findings and recommendations contained therein.

Sincerely,

cc: Federico Peña
Elizabeth Moler

————————-
Secretary of Energy Advisory Board
Task Force on Electric System Reliability

Interim Report

July 24, 1997

Background

This report makes recommendations regarding the security of the Nation’s bulk power system consisting of generation, transmission, and control facilities.

Electric reliability can be divided into two areas: reliability of the distribution system and reliability of the bulk power system. Bulk power system outages affect large areas and can have significant regional and national implications. Further, the rules for assuring reliable operation of the bulk power system can have an effect on the transactions occurring on the system. Federal regulators have responsibility for economic regulation of electricity in interstate commerce, including wholesale transactions involving most of the nation’s generation and transmission facilities, within and across state borders. An issue introduced by competition in bulk power markets is the need to assure reliable system operations in a competitively neutral way. While everyone agrees that system reliability must be maintained as a feature of a competitive electric industry and must be under the direction of experienced expert operators, not everyone agrees about how to resolve reliability issues in a manner that does not discriminate for or against certain participants in competitive bulk power markets.

While states have an interest in the performance of the bulk power system, state regulation has tended to focus on distribution system outages, that generally have only localized effects and are frequently characterized as being related to end-user customer service, which is an area of state jurisdiction. States have traditionally also had regulatory responsibility for economic and planning approval for certain generation facilities and recovery of their costs and siting approval of both generation and transmission facilities within the state.

Bulk power system reliability has two components: adequacy and security. Adequacy implies that there are sufficient generation and transmission resources available to meet projected needs at all times, including peak conditions, plus reserves for contingencies. Security implies that the system will remain intact even after planned and unplanned outages or other equipment failures occur. Most view transmission adequacy and system security as “public goods” that benefit all buyers and sellers of electricity, and which exhibit monopoly characteristics. While the market will likely play a role in providing certain services that are needed for transmission adequacy and system security, these are the areas of greatest national interest from a reliability point of view and the primary focus of this report.

Bulk power system reliability has historically been the responsibility of the electricity industry, as opposed to the government which has only indirect jurisdiction primarily through economic regulation of wholesale electricity sales by the Federal Energy Regulatory Commission (FERC). The Department of Energy and the FERC also have some limited authority under certain circumstances to order transmission, require interconnections, make reliability recommendations and collect information. The industry, through the North American Electric Reliability Council (NERC), a self-regulating organization traditionally made up of electric utilities, and the ten regional reliability councils establish reliability standards and monitor compliance. While these organizations have been effective in a world of vertically integrated electric utilities, there is concern today about the voluntary nature of their membership, their dominance by utilities, and the inability to mandate and enforce compliance among their members and other industry participants.

Further complicating reliability issues is incomplete jurisdictional authority. As mentioned above, the NERC and the regional reliability councils have jurisdiction only over their members. There are also thousands of municipal, cooperative, and power marketing utilities that are not subject to FERC or state jurisdiction.

Similarly, we recognize that the bulk power system is an international system. We recognize that the NERC, as a body that includes U.S., Canadian, and Mexican members, has a unique role in setting and monitoring international reliability standards and that close cooperation will be required between national, state, and provincial regulatory agencies that may be given authority for reliability oversight.

Reliability Institutions

The electric utility industry traditionally has been vertically integrated, fully regulated and composed of a limited number of entities. These entities were similar in makeup, in their investments in the bulk power system, and in their expectations for grid operation and use.

In this environment, three institutions evolved that are the focus of this report.

NERC – In 1968, the North American Electric Reliability Council was formed in response to the 1965 power outage that blacked out the northeastern United States and Ontario, Canada. For over two decades, NERC’s mission has been to promote electrical system reliability and thereby prevent further such occurrences. The NERC has been a voluntary, industry-constituted governing body that develops standards, guidelines and criteria for assuring system security and evaluating system adequacy. The NERC has been funded by regional reliability councils which adapt the rules to meet the needs of their regions. Through the work of its ten regional councils and one affiliate council, the NERC has largely succeeded in maintaining a high degree of transmission grid reliability throughout the country. Historically, the NERC has functioned without external enforcement powers, depending on voluntary compliance with standards and peer pressure.

System operators – Today the country is served by approximately 150 separate control areas, each with its own system operator. The operators of these systems rely on communications with each other, access to essential system information, and real time monitoring and control of certain facilities to maintain system reliability. When an emergency occurs on the system, the control area operator takes action — both through communication and direct physical action — to ensure the integrity and security of the system. These people take and direct others to take the actions necessary to “keep the lights on” and to protect against damage to the entire system in the event of emergencies.

FERC — The Federal Energy Regulatory Commission is the federal agency with jurisdiction over the bulk power market, including interstate transmission systems. As part of these responsibilities, the FERC is implementing policies to assure that the owners and operators of bulk power transmission facilities under the agency’s jurisdiction provide non-discriminatory service to all power suppliers in wholesale power markets. Historically, the FERC has not had to involve itself with regulating reliability functions. Increasingly, some parties are calling upon the FERC to begin to exercise its current authorities by addressing reliability issues that intersect with the commercial needs of the industry.

At the onset, we note that the electric industry is changing and, indeed, has already changed in several respects: wholesale electric markets are opening to competition under open access transmission tariffs; several states containing more than one-third of the nation’s population have decided to permit retail consumers to choose their suppliers (nearly all of the remaining states are studying retail competition); energy companies are merging and establishing innovative joint ventures; new competitors are entering markets, and new institutions are forming (e.g., independent system operators; power exchanges; spot markets).

These trends indicate that in the future, market forces will determine when, where and what type of generation sources will be built and which energy trades will be transacted. Also, it is apparent that the nation’s transmission grid will be used by a larger number of entities for many more transactions. There are challenges regarding maintenance of traditional reliability levels in this new environment.

While the traditional reliability institutions and processes have served us well in the past, these institutions and processes need to be modified to assure that reliability occurs in a competitively neutral fashion, without favoring one or another set of market participants. To attempt to accommodate these new reliability issues that arise with competitive markets, today’s existing reliably institutions, and most notably the NERC, have undertaken a number of new initiatives including expanding their membership to include new market participants in addition to those long-standing members drawn from the electric industry. The Task Force welcomes these changes.

Task Force Findings

The Task Force has reached consensus on several key points:
1) Restructuring of the electric industry offers economic benefits to the nation and may result in a more efficient electric industry

2) While the changes brought about by restructuring are complex, the reliability of the system need not be compromised provided appropriate steps are taken. Transmission grid reliability and an open, competitive market can be compatible.

3) The viability and vigor of the commercial market must not be unnecessarily restricted. The market forces being introduced now depend on fair and open access to the transmission grid.

4) Commercial markets should develop economic practices consistent with the ingenuity and mutual interest of the participants. However, grid reliability must be maintained through disciplined technical standards and practices.

5) Reliability standards must be clear, transparent, nondiscriminatory, enforceable and enforced. Compliance must be mandatory for all entities using the bulk power system.
6) Regulatory oversight is necessary to ensure compliance with reliability policies and standards and to resolve disputes.

7) It is reasonable and practical to build on the experience and reliability standards developed by the NERC over the past 28 years. However, these standards as well as NERC’s own system of governance must be modified to accommodate the complexities of the competitive market.

8) Grid reliability depends heavily on system operators who monitor and control the transmission grid in real-time. In order to assure competitive use of the grid, system operators must be independent from owners of generation and transmission; they should have no commercial interests in electricity markets.

9) Bulk power systems are regional in nature and can and should be operated more reliability and efficiently when operators are coordinated over large areas.

10) The reasonable and necessary costs for maintaining the reliability system should be fully recoverable and equitably distributed.

11) Transmission grid reliability is a North American issue; the reliability relationships with Canada and Mexico must be preserved.

Task Force Recommendations

The Task Force recommends that:

1) The NERC expedite — to the fullest extent possible and consistent with assuring sound results — the modification of its governance structure to assure fairness and lack of domination by any single industry sector.

2) The FERC undertake a review of existing NERC policies and standards that affect the operation of an open wholesale market and undertake a review of NERC’s organizational structure and governance. This proposed role for the FERC is important in order to make reliability standards enforceable and to assure that reliability standards and practices are not misused in ways that would be discriminatory in the competitive market. Given the considerable demands currently faced by the FERC, additional resources may be required by the agency in order to undertake this role.

3) Federal legislation may be useful to clarify FERC’s authority and responsibility for overseeing and setting and enforcement of reliability standards.