Posts

Alchemix – Two Emissions Control Breakthroughs

Either one of this company’s two technologies are revolutionary. While they both sound too good to be true, it’s just possible that they’re for real. The company’s president, Robert Horton understands that people will be skeptical–he is himself, but takes the view that these things will either work or not. If they do, the implications are extraordinary.

They aren’t asking anybody to give them money until/unless the proof of the technology has been demonstrated. They’ve raised $2M already, have 13 employees, and tests are scheduled next month at AEP and Southern Co.

We first heard about this company at the Environmental Capital Network Forum in San Francisco last winter. At that time, they had planned to discuss only the first technology, but decided at the last minute to present the second one also. There has been a lot of progress since then. The text presented here is adapted from company materials.

The two technologies are:

1. Ash Conversion Technology (ACT) ? aims to produce a range of cementitious products from coal ash inside coal-fired utility boilers.

2. Catalytic Reduction Technology — Raphite™ is a naturally occurring low cost volcanic material which acts as a catalyst at elevated temperatures. Combustion gas oxides including SO2, NOx and possibly CO2 have been demonstrated to be substantially reduced after contacting Raphite coated surfaces at a temperature of approximately 900 F. It has the potential to reduce dramatically the cost and complexity of emissions control.

In the year 2000, Alchemix expects to offer coal-fired boiler operators turnkey services which will reduce ash disposal costs for clients and bring combustion gas emissions into regulatory compliance for a fraction of the cost of alternative approaches. At the same time, new liabilities to plant operators from ponded or solid refuse will be curtailed.

These services will be offered, on an intermediate to long term basis, on behalf of Alchemix by established and respected combustion engineering companies. Their incentive is compensation based on revenue rather than time, and the ability to offer low cost, long term services to a much expanded customer list.

Contact: Robert Horton, Chairman
Alchemix Corporation, Carefree, AZ
480-488-3388 alchemix@att.net

——————————–
More Details

1. Ash Conversion Technology (ACT)

ACT aims to produce a range of cementitious products from coal ash in coal-fired utility boilers. It converts a waste stream with an average disposal cost of $16/T to a cement additive having a market value exceeding $40/T.

The process eliminates the need for calcining, the heating process usually required for cement production which produces great amounts of combustion gases and CO2 . This is significant, as the cementmaking is reported to be, per pound of product produced, the most polluting industrial process. The calcining of lime associated with cement production accounts for four percent (4%) of all CO2 released to the atmosphere worldwide. When demonstrated at bench scale, a five percent (5%) increase in energy efficiency has also been observed from the application of the ACT.

While characterization and acceptance of new cements may take years, an intermediate product, low carbon fly ash, can be produced now from the application of ACT.

Alchemix has an agreement with R.W. Beck, a leading combustion engineering company, and has ongoing discussions with Essroc Cement Corporation, the sixth largest cement company in the U.S., to fund the development and commercialization of the ACT. These agreements call for R.W. Beck to install and operate ACT. Essroc’s role would be to buy and distribute the products produced. To date, technology verification work conducted in June and July of 1999 at Pennsylvania State University has demonstrated the ability to produce low carbon fly ash. Data are not yet available indicating the quality of higher value products.

ACT is implemented by injecting supercritical water into the combustion gas stream in the boiler, downstream of the combustion zone, while combustion gases and the minerals they contain are still at high temperatures.

– Carbon present in the fly ash reacts with the water to form Carbon Monoxide and Hydrogen.
– The Carbon Monoxide and Hydrogen burn.
– Ash minerals become highly reactive and cementitious.
– Combustion of unburned carbon reduces particulate pollution significantly.
– Low carbon ash or various geopolymer cements can be selectively produced.

ACT makes it possible for coal-fired utility boilers to perform as mineral conversion devices simultaneously with their designed use as electricity generators. ACT is easy and inexpensive to employ as it involves only the measured injection of water into the combustion gas stream. The process converts directly — within the utility boiler — inorganic minerals which are usually emitted and collected as fly ash, into a salable low carbon fly ash cement additive or a variety of cements.

2. Catalytic Reduction Technology (Raphite™)

Raphite is a naturally occurring volcanic material which acts as a catalyst at elevated temperatures.

– Raphite would be installed in and on exhaust ducts leading from combustion zones of coal-fired boilers (quickly and at low cost).
– Raphite has been shown to substantially reduce combustion gas oxides including SO2, NOx and possibly CO2 when contacting Raphite coated surfaces at a temperature of approximately 900 F.

No other single control technology effectively reduces both SO2 and NOX, and there is no commercial technology claiming measurable CO2 reduction. Where elemental carbon can be captured or reburned, added fuel efficiency is possible.

The cost of implementation will be low. Raphite’s active ingredients are combined in nature, so it requires only low cost mining and grinding prior to application, unlike other catalyts which require a combination of refined and rare metals.

Alchemix will offer Raphite technology, through an established combustion engineering partner, as a turnkey service. Alchemix is considering an exclusive engineering contract with a leading combustion engineering firm. That firm would advance necessary funds for commercialization and support Alchemix until financeable contracts are in hand. Alchemix has exclusive rights in the US for all uses of Raphite related to coal combustion.

Independent proof of concept testing at Four Corners by APS indicated 83% SO2 reduction and complete elimination of NOX. A measurable reduction of CO2 was also indicated. These excellent results were from field tests which were not optimized. Additional work towards commercialization at Four Corners is anticipated.

Additional work will be required to identify and understand all of the variables impacting the performance of Raphite.

The combined cost of available SO2 and NOX reduction strategies typically range from $20 to $45 per ton of coal burned. The prospective capital and operating cost to implement Raphite is expected to be less than $5 per ton.

More comprehensive field tests are now scheduled at Southern Research Institute and the 1300 MW Mountaineer plant of AEP. A portion of the costs of these tests are being paid for by Southern Companies and AEP, the two largest investor owned electric utilities in the world. Together they represent thirty percent (30%) of the coal fired utility capacity in the US, and are aggressively seeking lower cost solutions to multibillion dollar compliance issues.