Bulletin #8 – LBL Report Utility Needs INEL

UFTO Bulletin #8

June 15, 1995

To: UFTO Subscribers:

. . in this issue: . . . . . . . . .

LBL Report Utility Needs INEL

 

1. Enclosed — the final report for Lawrence Berkeley Laboratory (LBL)…. note the special core competencies in Energy Analysis, Buildings, Lighting, etc. and the special situation of the CIEE.PLEASE don’t put it in your “to-read” pile…..Look it over and make copies and route it in your company now.

2. I sent our UFTO “Technology Needs of Utilities” document to ten labs last week. We’re already getting some responses. A copy is enclosed for you, along with the cover letter and the distribution list….these are our key contacts in the labs. Go ahead and call them at any time you feel the urge.

3. There’s a whole new situation at Idaho National Engineering Lab(INEL). Thanks to a referral by Graham Siegel, I got a call from Tom Sauerbrun, their new Utility Program Manager. As you may recall, INEL’s management contract was awarded last year to a new team headed by Lockheed (now Lockheed Marietta), with a daring new performance based compensation scheme, especially heavy on tech transfer and commercialization.

INEL has some very exciting new technology for the utility industry that they’ve kept very quiet, and we’re getting an early look. Official announcements are due in a few weeks.

Specifically, they say they have a complete and tested “Intelligent Distribution System”, ready for prime time (i.e., spinoff from the lab of a fully operational commercial team).. It’s been developed in-house, and implemented on the Lab’s own extensive power system, where it will be demonstrated. It’s an advanced software system that can integrate many different commercial technologies that are already available. If INEL has it right, this sounds a lot like what many of you are looking for — advanced distribution control technology, and a way to make it into a major new business opportunity. Let me know if you can’t wait for their announcement and want to make contact immediately.

We’re also the first to be notified of their planned invitation-only “Utility Day”, to take place in August or September. Details to follow.

Any objections if I do INEL now as part of the 94-95 program, in place of a DOD lab?

BTW (that’s “by the way”, in I-way lingo) – Livermore tells me there’s tremendous interest in Capacitive Deionization (see UFTO Update 1/95) — vendors taking licenses for all kinds of applications, and even a major utility has come to have a look–not one of us, sorry to say. Isn’t the idea of a neat little electric water softener intriguing? Not to mention desalination. You could do a joint venture with one of the licensees, e.g. a water treatment company.

PS: Have a look at the enclosed brochure for the UBG meeting (July 17 — preceding the 5th International Conf. on Batteries for Utility Storage, July 18-21). Looks like a good place to learn what’s happening. If you don’t have anyone going, my offer to attend on your behalf still stands.

Technology Transfer Opportunities – Berkeley National Laboratory

Final Report

Technology Transfer Opportunities in the National Laboratories

Lawrence Berkeley Laboratory

Berkeley, California

June 1995

Prepared for:

Utility Federal Technology Opportunities (UFTO)

 By:

Edward Beardsworth

Consultant

This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities

 

 

Contents:

page

1. Summary

2 LBL Organization

3. LBL Technologies & Programs

10. LBL Contacts

 

This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.

 

Summary

This report details findings about technology and technology transfer opportunities at the Lawrence Berkeley Laboratory (LBL)that might be of strategic interest to electric utilities. It is based on two visits to LBL in February and May 1995, as part of the UFTO multiclient project.

Background

Noting the tremendous scope of research underway in the research facilities of the U.S. government, and a very strong impetus on the government’s part to foster commercial partnering with industry and applications of the technology it has developed, the UFTO program has been established as a multi-client study of the opportunities thus afforded electric utilities.

LBL Organization

Unlike the matrix structure common at other DOE labs, LBL has a straight line management organizational structure, and they’ve mostly eliminated (except on the administration side) the layer of managment known as “ALD’s” or Associate Laboratory Directorates seen at many other labs.

Nine technical divisions report directly to the Laboratory Director, C. V. Shank, and several others report to the ALD for Operations. There are also a number of Research Centers and User Facilities within the various divisions.

LBL is a major multiprogram lab managed by the University of California (as are Livermore and Los Alamos), with more than 3000 employees, a third of which are scientists and engineers. The annual budget is over $250 million. LBL is situated adjacent to the Berkeley campus of the University of California, and there is a great deal of collaboration and overlap between the two organizations. Many of the staff hold dual appointments, and UC graduate students often work in LBL programs (notably reducing the cost of research!). No classified work is done at LBL, so security is light, contributing to a campus-like atmosphere.

Administrative relationships can become quite complex. Projects, programs or “centers” may be either university or lab-based. One particularly noteworthy instance is the California Institute for Energy Efficiency (CIEE), which is actually part of UC’s quasi-independent Energy Institute, and until recently was funded by California utilities and state agencies. It is set up as a CRADA between LBL and the California utilities. Its technical resources could become more broadly available as they seek new roles and sources of funding.

Virtually all of the programs in the Energy and Environment Division are relevant to the electric utility industry, as are portions of other divisions(e.g. Materials, Chemical and Earth Sciences, and Information and Computing Sciences). Though the organizational structure is not ideally suited to cross-cutting activities, collaboration and joint efforts are not uncommon.

Within Energy and Environment, areas of interest include building energy efficiency, energy analysis, lighting technology, combustion cleanup, and energy conversion and storage. LBL has very strong programs in these areas, however the dissemination of results and interaction with industry has been somewhat limited, suggesting a possible underutilization of these resources by utilities which UFTO can help to overcome.

Generally speaking, much of LBL’s work in these areas tends to be informational or precompetitive. However there are also a number of specific developments underway with industrial partners, and some that could represent important strategic technology opportunities for utilities.

One other general point: each of the labs annually publishes an “Institutional Plan”, which is organized according to which DOE Program Office supports the work, not the lab’s own organizational structure. Thus a “mapping” between the two structures is required to be able to see the work of the groups within a lab. In most instances, divisions and programs also publish annual reports, providing detailed though not always current accounts of the work

General Telephone # is (510) 486-4000

LBL Technologies & Programs

 

Topics Covered in this Report:

• Energy in Buildings

• Lighting

• Energy Analysis

• Environmental Research (Combustion and Air Quality)

• Information & Computer Sciences

• Materials Science

• Electrochemistry–Advanced Batteries and Fuel Cells

• Geothermal Energy

 

Energy in Buildings

LBL is particularly strong in work on Energy in Buildings from a number of points of view, in three distinct programs and a “Center”, plus the CIEE.

1. Indoor Environment Program, Joan Daisey, 510-486-7491
Ventilation, infiltration, ducts, efficiency in existing buildings, radon, indoor air pollutants, exposure and risk assessment, indoor air quality standards, etc.

• Duct Sealing Technology Mark Modera 510-486-4678, Max Sherman 510-486-4022

Energy losses from leaks in ducts are variously estimated to account for as much as 1/3 of the energy used in residential air-distribution heating and cooling. LBL has developed a technique for sealing leaks in existing systems. Analogous to “stopleak” used in automobile cooling systems, an aerosol is injected into the system which deposits itself at leaks, closing them off. Developed at LBL with support of CIEE, it is to be commercialized by EPRI, acting as a member of CIEE. (Agreements currently in negotiation.)

• Indoor Air Quality

Becoming more of an issue. Lawsuits more common. Standards being revised. Need better sensors for commercial use. Direct measurement more meaningful than specifying air change rates. LBL working on specific species, e.g. VOCs, CO, etc. Environmental Chambers allow detailed simulation and test of emissions from indoor sources.

2. Building Energy Analysis (in the Energy Analysis Program) Alan Meier, 510-486-4740
Data compilation, analysis of measured data (meta analysis across all available studies), assessment of efficiency impacts of technologies and programs, DEEP (Database on Energy Efficiency Programs), impact of high albedo surfaces, shade trees, etc., monitoring building performance, alternatives to compressive cooling, load shape estimation, urban climate, public housing.

3. Building Technologies Program , Stephen Selkowitz, 510-486-5064
Windows and daylighting, building energy simulation tools, lighting systems.

• Electrochromic Window Coatings (“smart windows”) can vary light transmission by from10-80% with the application of a low dc voltage; can be controlled to maintain constant light levels with dimmable electric lighting, control solar heat gain, and result in substantial overall energy savings and load control.

LBL is technical lead for DOE, and holds patents for two families of polymers for use in these coatings, and has CRADAs underway with Dow Chemical. Expect commercial prototypes in 2-3 years. Research field tests are already underway. There will be demos with utilities.

• Selective (“low-E”) Coatings pass visible light and block infrared. LBL doing research in the durability and performance of these coatings.

• Advanced Insulating Windows (“Superwindows”) include coatings and gas filled systems. LBL developed a concept which has been commercialized (with utility co-supported field tests

• Daylighting Design Tools

4. Center for Building Science , Evan Mills, 510-486-6784
A “home” for the three above programs, serving as a national and international source of information, technical support to policymakers, support to new institutions and demonstration programs, facilitate tech transfer.

“From the Lab to the MarketPlace–Making America’s Buildings More Efficient”, Jan, 1995

(40 page overview of building programs)

Center for Building Science News

(contact Ralph McLaughlin, 510-486-4508–also for list of the Center’s publications.)

5. California Institute for Energy Efficiency(CIEE),

Jim Cole, Director, or Carl Blumstein, Assoc. Director, 510-642-9588
This is a separate entity of the University of California — a collaborative of the California PUC and Energy Commission, the California electric and gas utilities, Universities, and LBL, focused directly at advancing technology for energy efficiency in California (all sectors) mid to long term.

CIEE may be an interesting target of opportunity to UFTO members. Its funding has been drastically cut — Calif. utilities are no longer paying dues. CIEE has funds to keep going for another 2 years, as it looks at alternatives for the future, one of which is to broaden its attention outside California.

CIEE may be a useful resource to utilities elsewhere, with its expertise and repository of technical information (available free). Also, there are ongoing projects which could be tuned or redirected to the interests of new players. As just one example, Building Performance Measurement, Operation & Control: Diagnostics for Commissioning and Operation has DOE support, and may be a “line of business” opportunity for utilities. An automated system is being developed that will help operators diagnose performance degradation, so that buildings can be operated “to spec”. There is also work in low NOx burners, alternatives to compressor cooling, HVAC distribution systems, and many other areas.

 

Publications:

CIEE 1992 Annual Report

CIEE 1993 Annual Report

1994 Annual Conference Program

“Research News” (newsletter discontinued. back issues available)

Various technical reports

 

Lighting Systems, Francis Rubinstein, 510-486-4096

LBL is a lead player in lighting technology development, with its extensive R&D program in advanced lighting sources, fixture design, measurement, advanced controls, and education. (A detailed list of Publications of the Lighting Group is available. 510-486-5388)

For lighting, there are many different approaches appropriate in different applications and niches. There isn’t and won’t be a single “magic bullet” new technology. Utilities need to be informed about what is available on the market but is still underutilized (e.g. adv. controls, advanced compact flourescents, etc.) There are different solutions in different niches.

The state of the art in control systems doesn’t yet permit the specifying of useable systems that will achieve energy savings. This is a subject of particular interest at LBL, which is working with the NIST sponsored effort with ASHRAE standards committee to establish the “BACKNET” building automation energy managment protocol. LBL is also working with a utility and the GSA to propose a major advanced lighting control demonstration project in a Federal building. It is the area for utilities to get involved in, as relamping and reballasting become less interesting. Note that ESCOs can count on savings from relamping, but controls are unfamiliar, and can confuse their basic proposition of assured shared savings.

Utility Retrofit Energy Efficiency Program (UREEP): a new proposed program to support utility customer service programs with integrated training and education on advanced lighting retrofit. Will provide participating utilities with practical information and comprehensive guidelines and procedures to use with their customers. A number of utilities have already expressed interest in joining. Michael Siminovitch, 510-486-5863.

Sulfur Lamp: LBL is playing a major role in development and testing. The DOE press releases last year got a lot of attention, but this is still a long way from commercial availability. Generally, high efficiency comes with high intensity, so it means that a way to distribute the light from a single point (not just a fixture) is needed, thus the light pipe configuration. Demo applications/sites will be chosen soon. Interested utilities should contact LBL: Francis Rubinstein, 510-486-4096

Tests and Measurements: LBL has unique measurement programs and equipment, and can perform tests on prototype new lighting technologies. As one example, there is no data available on the angular sensitivity of photosensors, but LBL is performing these measurements. LBL won’t permit its name to be used for commercial testimonial purposes, nor will they compete with commercial test labs.

Advanced Lighting Guidelines: 1993 is a DOE report (DOE/EE-0008) provides an overview of specific lighting technologies and design applications for energy efficient lighting. The report assesses lighting strategies, discusses issues, and explains how to obtain quality lighting design and consulting services. Each of 10 sections provide a technology overview, discussing products on the market. For use by electric utility personnel involved in lighting programs, the report is also used at FEMP training sessions. (The work was cofunded by EPRI and the Calif. Energy Commission, each of whom also published the same document under their own respective covers.)

 

[Note: The Lighting Research Center at RPI in NY conducts the National Lighting Product Information Program (NLPIP), funded by a number of utilties, EPA, DOE, and others. NLPIP publishes “Specifier Reports” and “Lighting Answers”, providing detailed technical information on commercial products. tel 518-276-8716.]

 

Energy Analysis Program, Mark Levine, Program Leader, 510-486-5238

Steve Weil, Deputy ” ” , 510-486-5396

List of Publications; Current Projects — available from Karen Olson, 510-486-5974.

• Utility Planning and Policy, Ed Kahn, 510-486-6525

Nationally recognized experts in utility industry analysis, funded by DOE Office of Utility Technology (OUT), and no utility funding. The product is “analysis”. Studies have included competition and bulk power markets, the cost of electricity from IPPs, a comparative analysis of the impact of power purchases on utility cost of capital, transmission pricing, IRP methods and case studies, industry evolution, DSM resource characterization, gas DSM and fuel switching, DSM bidding experience, “The Cost & Performance of Utility Commercial Lghting Programs”, J. Eto, etal., LBL-34967, May 94

The group takes on potentially controversial industry wide issues, and has a reputation for objectivity. An annotated publications list, and copies of the publications, are available from

Patty Juergens, Fax # 510-486-6996 or email: pajuergens@lbl.gov.

 

• International Energy & Environment Studies:

– OECD transportation analysis, energy efficiency; structure of demand in Europe and FSU; Lee Schipper

– Energy data, trends and scenarios for developing countries– Jayant Sathaye

– Global climate, developing country economics; training — Steve Weil, Mark Levine

– Energy Business Development–China, India, S. America – the politics, policies, local liaison, intelligence gathering, etc.; early stage plans to couple efficiency and power plant projects.

– Energy in China, e.g. report in preparation and workshop Fall ’95 on business opportunities for cogeneration in China; Mark Levine

 

• Energy Conservation Policy, Jim McMahon, Leader, 510-486-6049

Engineering economics of appliances. Analyze and develop appliance standards. Engineering assessments. Assess impact of standards on manufacturers; forecast sales/prices.

“Economic and Technical Analysis of US Appliance Efficiency Standards” — series of major technical support documents–DOE/EE-0009, Vol 1-3.

• Energy Efficiency Markets and Forecasts, Jon Koomey, 510-486-5974

National and regional level residential end-use forecasting model is fine-grained with respect to technologies and specific end uses. (LBL developed default data for REEPS and COMMEND). Conservation supply curves. Consumer behavior and market failures.

• Building Energy Analysis See description above (page 3).

Environmental Research, Nancy Brown, Program Leader, 510-486-4241

• Air Quality: Urban and Regional Air Pollution, Global Climate Change

(e.g. Reformulated Fuel effects study, Ammonia inventory, atmospheric aerosols, etc.)

• Combustion Research: Chemistry, mixing, diagnostics, …

Reactive Flow Modeling (reaction dynamics, rate coeff prediction, Nitrogen chemistry, reduced mechanisms, emissions inventories, turbulence chemistry interactions)

(e.g. Pollutant control, gas turbines, incineration, fire safety, health effects assessement)

• Low NOx Swirl Burner — ultra lean premix flame stabilized by weak swirl, 4-7 ppm NO, Applicable to wide range of applications, from home furnaces to large boilers and power systems. Robert Cheng, 510-486-5438

• PHOSNOX process, developed in 1990, removes NOx from Flue Gas simultaneously with SOx removal in existing wet FGD systems. NO is oxidized into more soluble NO2, by the addition of yellow phosphorus P4 to the scrubbing solution. Phosphoric acid is a recoverable byproduct. Process would be cheap and effective, but perceived safety issues have blocked further development. (Bechtel was actively promoting this for some time.) Ted Chang, 510-486-5125

• Iron Thiochelate is a more recent development addressing the same issue. The catalyst is added to the limestone in wet scrubbers to absorb NO. The catalyst is then regenerated as the bound NO is reduced to ammonia by electrochemical reduction [See Nature, v. 369, 12 May 94, p. 139.]. In mid May 95, a patent application was filed for a new simpler reduction technique, in which the liquor is passed through a column of Fe chips.

WANTED: a demo host, slip stream or pilot scale. Ted Chang, 510-486-5125

• Pozone uses yellow phosphorus in water to generate Ozone for bleaching paper pulp, and in other applications where the presence of phospate “contamination” isn’t an obstacle. International Paper is doing benchtests. Costs are estimated to be 1/2 to 1/3 (with credit for selling the phosphate byproduct) that of electrically produced ozone. Another possible application — regenerating active carbon that’s loaded with contaminants–could be done locally instead of at the very few licensed facilities. Ted Chang, 510-486-5125

• A novel catalyst offers a breakthrough in treating SO2 gas from coal-fired power plants, converting 98% of it to elemental sulfur. The Ralph M. Parsons Co. has just been granted an exclusive license. Ted Chang, 510-486-5125

Information & Computer Sciences, Stu Loken, Director 510-486-7474

This division includes both the operation of internal lab computer and information systems (technical and administrative information processing, and information services such as publications and the library) and research in information sciences, focusing primarily on network issues.

In this latter role, LBL has played a major part over the years in the formulation of the internet. In fact, TCP/IP traces back to LBL. The network research group deals with bandwidth allocation and scaling issues associated with the rapid growth in the size of the network.

The utility industry is expected to be a major player in the NII, because of the direct benefits to utilities and their customers. It’s already apparent that energy management programs and demonstrations will require such a large number of addresses on the network as to raise a problem that hasn’t really been addressed as yet.

In this light, LBL recognizes that its interactions with utilities have been too limited, and they are just beginning a process of self-education and outreach to the industry. They are looking for partners to work with them, particularly on integrating energy management equipment into network applications.

Materials Science, Joel Ager, 510-486-6715

High degree of involvement with industry, addressing fundamental materials development issues, e.g. high temperature superconductor sensors (squids), tough silicon carbide composites, ultra-hard coatings, crack-path prediction in layered structures, failure mechanism identification in nickel oxide scales (with EPRI), in-situ corrosion study of stainless steel (also EPRI).

 

The super-hard (diamond like) coatings can now be applied cost effectively on large objects (see UFTO Flash 3/21/95).

DOE Center of Excellence for the Synthesis and Processing of Advanced Materials (CSP), funded by the DOE Office of Basic Energy Science, is a network involving 12 of the major DOE labs, to support fundamental research and establish partnerships among the Labs, universities and Industry to shorten the time between development and applications. Steering Groups and a project plan exist for each of more than a 1/2 dozen topics, including Conventional and Superplastic Metal Forming, Materials Joining, Processing for Surface Hardness, and Mechanically Reliable Surface Oxides for High Temperature Corrosion Resistance, plus several dealing with microstructures. A 60 page description of the CSP is available from DOE. [I’ll obtain copies for anyone who wants one.]

 

Energy Conversion and Storage

LBL’s efforts in this arena are wide ranging, from advanced electrodes, to modeling, surface layer physics, and applied research in lithium and zinc based battery systems. There may be less of a place for direct interaction with utilities, as the work tends to emphasize research, not devices. LBL could be helpful, however, as an objective advisor to utilities about technology.

Advanced Batteries and Fuel Cells, Frank McLarnon, 510-486-4636

Berkeley Electrochemical Research Center is a world center for basic electrochemical engineering research, operated as a collaboration between LBL and UC Berkeley. It manages a substantial portion of DOE’s applied battery and EC research (the Exploratory Technology Research Program for Electrochemical Energy Storage), and provides technical guidance to research projects at other institutions around the country.

Geothermal Energy, Jane Long, Head, Energy and Resource Development, 510-486-6697

Geothermal reservoir analysis for specific sites–optimization, recharge, performance modeling, geochemistry, instrumentation, etc. Analysis tools applicable to radwaste and ground water issues.

Ground Source Heat Pumps: proposal for optimization of subsurface part of the system, effects of geology and hydrology on performance. Also, internal (“lab-directed research”) proposal to study ground-source “coolth”.

 

LBL Contacts (general phone # is 510-486-4000)

The primary contact for UFTO is:

Donald F. Grether, Deputy Division Director, Energy & Environment Division

510-486-6283

 

Technology Transfer:

Rod Fleischman, Assoc Lab Director, Industry & Government Partnerships

510-486-5134

Cheryl Fragiadakis, Head, Tech Transfer Dept. 510-486-7020

Bruce Davies, Marketing Manager, 510-486-6461

Industry & Government Partnerships, (quarterly, beginning 1/95) is a new newsletter, listing new CRADAs and licenses issued. Contact Cathy Langridge, 510-486-5894

Information Source Contacts / Technical Information Services:

 

Public Information Department: 510-486-5771

 

LBL Publications:

5 Year Institutional Plan

LBL 1994 (annual) Report to the Regents, University of California

Energy & Environment Division (contact Lila Schwartz, 510-486-4098):

Program Annual Reports:

Environmental Research

Energy Conversion and Storage

Energy Analysis

Indoor Environment Program

Buildings Technology Program

Energy & Environment Divison Newsletter, (monthly)

Energy & Environment Divison brochure (PUB-734 6/94)

Fax – Tech Needs of Utilities

To: UFTO Subscribers
UFTO FAXGRAM June 1, 1995

 

“Technology Needs of Utilities” (draft)

I meant to ask about this in yesterday’s fax. Attached to the May 3 — Bulletin #7– there was a draft of a list of utility needs, that we’ll give to our contacts at the national labs. I asked for comments, revisions, additions, deletions, etc.

It must be perfect (ar at least adequate), because nobody has sent me any comments. If I don’t hear from you by Monday, I’ll assume it’s OK to send out.

Closure on 94-95

Also in the #7 mailing–the memo about closure terms for the 94-95 program. Please let me know if it accurately reflects your understanding. Again, can I assume that “silence gives consent”?

Hope to see you in SF! We already have at least 4 for dinner on the 19th. Any suggestions for a restaurant?

Thanks again.

EdB

BTW: What interest in the PNL highlights?

Fax – Group Dinner

To: UFTO Subscribers
UFTO FAXGRAM May 31, 1995

If You’re Coming to SF!

• UFTO Group Dinner, Monday June 19, San Franscisco

Many of you will be in town for the EPRI Technology Delivery Workshop. I won’t be attending, so instead we’re planning an informal dinner together on Monday (the “dinner on your own night”).

Please let me know by fax, email or telephone if you can join us. Place and time TBD.

Also, be thinking about anyone else you’d like to invite — from other utilities that might be interested in UFTO.

And, if you’re free on Wednesday afternoon, there are any number of interesting things we could do, like a quick trip to Livermore or Berkeley, or a meeting with any of the startups here in the area that I’ve been telling you about. I’m at your service.

EdB

Bulletin #7 – PNL Utility Needs “Closure” Terms

UFTO Bulletin #7

May 3, 1995

To: UFTO Subscribers

. . in this issue: . . . . . . . . .

PNL Utility Needs “Closure” Terms

1. We’ve finished all the briefings and needs assessments at your companies. Enclosed please note the draft “Utility Needs” memo to give to our contacts at the National Labs, so they can respond. Please get your comments or changes to me ASAP.

2. Also enclosed — a memo detailing the terms we talked about at our meeting in Golden for official close- out of the 94-95 program. Let me know if you have any concerns about it, and if it looks right to you, please sign and return to me.

3. I visited Pacific Northwest Laboratory (PNL) in Richland WA, adjacent to but separate from the infamous Hanford Site. PNL is run by Battelle Memorial Institute, and has a unique contractual arrangement with DOE where they can do work either as a national lab or as a private firm.

They’ve got a lot of really exciting work, and they’re committed to working with the utility industry, based on a long history with BPA and others. Some of you may know Merwyn Brown, formerly of PG&E’s R&D Dept., who joined PNL recently as an Assoc. Director of the Energy Programs, who’ll give them the insights and direction they need to make it happen. Merwyn, and with our main contact Carl Imhoff, are really excited about the opportunity that UFTO gives them to make contact with utilities.

Pending my major writeup for PNL (along with LANL, Sandia and Berkeley), some “UFTO Flash” highlights are attached.

4. Any interest in the special situations at Los Alamos and Sandia that I told you about last month? A few of you have made contact about them, but the response hasn’t been overwhelming (e.g., no inquiries about “HyMelt”, which I thought looked really interesting). Either the “Action Gap” is a bigger problem than we thought, or these deals aren’t on target and maybe I need to recalibrate? Comments?

By the way, I now have the Los Alamos discussion paper on their PEM fuel cell. If you didn’t get a copy directly from them and you’d like to have one, let me know.

5. DOE is supposed to announce a major reorganization this week. The Office of Utility Technology (OUT) has been working on it’s own reorg. They had scheduled a Stakeholder’s Meeting for June 6, but it will probably be postponed until September. Previous meetings have been notably short on utility representation, but the problem’s been recognized, and through our contacts at PNL, UFTO members will be the among the first to be invited.

(Those who attended the DOE Industrial meeting in DC this week, I hope you’ll pass along any impressions, news and information. Thanks.)

6. I’ll be gone May 8-23. Please feel free to send mail, email, fax or voice mail messages in my absence, and I’ll get back to you as soon as I return.

UFTO 94-95 Closure Memo

To: UFTO Members
From: Ed Beardsworth
Subject: Closure on the 94-95 UFTO Program

94-95 UFTO Deliverables to date

• Final reports issued:

Livermore (LLNL) NIST
Argonne (ANL) NREL
Oak Ridge (ORNL)

• Site Visits: (Reports in preparation):

Berkeley (LBL) Sandia
Los Alamos (LANL) Pacific Northwest (PNL)

 

• Contacts/invited: NASA Lewis, ETEC, DOD (various)…

• Group Meeting & NREL Site Visit

• “Extras”: DOE International Fossil Meeting;

LLNL Update;

Bulletins — items of interest

• Member Utility Briefings & Needs Assessments

• Networking @ DOE re:

people; partnerships; programs content/big picture; organization/structural change

 

Remaining Tasks:

• The 94-95 UFTO program will be considered complete with delivery of reports for LBL, LANL, Sandia, PNL, and one DOD facility.

• The consulting time allotted to each member can be used anytime through August ’95.

 

Agreed to: (signed) _____________________________ _________ (date)

(print name) ____________________________

(company) ____________________________

 

Please sign and return to Ed Beardsworth

Fax – Mar 1995 “Breakthrough”

To: UFTO Subscribers
UFTO FAXGRAM March 25, 1995

“Breakthrough”

Many of you have told me to be on the lookout for developments that could bring fundamental and dramatic change to the world we live in. Of course, almost all such claims of this kind are entirely spurious. You deal with this kind of thing all the time, when some inventor calls the head office, and you have to respond.

I’ve been talking with a small company north of San Francisco whose business is to look for breakthroughs in energy and superconductivity. They say that 99% of what they see doesn’t bear up under scrutiny, but they keep an open mind, and they’ve found some remarkable things that can’t be easily debunked. Their approach is to proceed cautiously, and subject claims to increasingly detailed and careful study.

The specific topic at hand is Room Temperature Superconductors. Anyone in the field will tell you that claims for this appear on a regular basis, and that nothing has been demonstrated on a reproduceable basis. In fact, there is a long but little known history, dating back to a prediction by a reputable scientist in 1964 that superconductivity should be possible at room temperature or higher, and early tantalizing experimental results. There are even patents filed. There are also a number of articles in respected physics journals. Certain key papers were translated from Russian and were either never published in English, or appeared in a little read journals.

This company has two programs that appear to have real promise. One program involves polymers developed by a group of Russian scientists, and the other some unusual work in ceramics in India. The company has locked up an exclusive relationship with both, and is supporting further development and rigorous testing and evaluation.

They are in discussions about strategic alliances with some very large companies, and they may get a government contract to do a feasibility study for very small SMES units (even speculating on something as small as a D cell).

Needless to say, I am intrigued. One’s automatic response is to dismiss something like this, if only on the basis that if it were true, it’d be big news, and big companies would grab it. There are reasons, however, why that isn’t necessarily so, and I believe it deserves looking into.

They have a detailed business plan, complete with technical references, which they will send to you at my request. They are looking for $1.2 million in working capital to carry them through the next phases of the work, so that they don’t have to be subject to domination by their alliance partners-to-be. If the funding precedes definitive validation of the Indian work, the equity share would be 10%. If afterwards, 5 %. And perhaps some other kind of business arrangement could be negotiated.

Please let me know if you’re interested. EdB

Bulletin #6 – NREL Visit, UFTO Meeting, Sandia, Los Alamos

UFTO Bulletin #6

March 21, 1995

To: UFTO Subscribers

. . in this issue: . . . . . . . . .

NREL Visit, UFTO Meeting, Sandia, Los Alamos

1. On Thursday March 9, we had an all day nonstop series of follow-up presentations and discussions with NREL staff, on all aspects of their programs. Everyone found the day to be very valuable, including the NREL folks, who appreciated the chance to present their work and to learn a bit more about what the industry is up to. Our group was the first of its kind that NREL had ever encountered, and the sessions gave them some important new perspectives.

2. On Friday 3/10, we had our own group meeting, to discuss the UFTO program and ways it could be made more effective. Every UFTO member utility was represented except for Wisconsin Electric (Graham Siegel made his own visit to NREL a few weeks ago.) A draft “Proceedings” is attached, subject to any comments that attendees might want to offer. (Please send me comments ASAP, along with copies of your notes or “trip report” if any!).

3. The next week, I went to Sandia and Los Alamos for more “drinks from a fire hose”. Once again, there appears to be some very exciting opportunities for utilities in what these labs are doing, and a strong interest on their part in getting closer to utilities.

A few highlights are outlined in an attachment. There are some very significant ground floor opportunities, some of which are quite new, unannounced, and time-sensitive.

4. One key issue keeps coming up. The labs want to know if we’re serious, and if there’s a real possibility that we (you) are prepared to do business with them in some concrete way, if the right kind of technology opportunity comes along. They’re understandably wary of all the time it takes for them to host visitors, unless there’s a reason to think something will come of it.

I’ve indicated that we (you) are interested, motivated, and serious, and that if the technology is right, “anything is possible,” ranging from substantial funding under a Crada or work for others agreement, to hosting demos, to investments in new ventures.

As you review the various “deals” I report to you, be thinking not only if the technology is interesting, but also what kinds of resources you’d be prepared to bring to the table, and what kind of business arrangement you’d want. Let’s show the labs we mean business.

PS: If any of you are looking for a better way than Dialog to search for technology information, particularly from government sources, give me a call. I’ve got a recommendation for you.

NOTE: The current domestic UFTO membership comprises approximately 1/6 of the total U.S. electric utility industry! And the international participation amounts to about 1/7 of the U.S. industry.

(Thanks to Janie Farrington at PSI/Cinergy for the figures.)

HY MELT

(Sandia)

Ashland Oil has demonstrated proof of concept in their labs, and has funding committed for a production installation. What’s missing is the piece in the middle — the intermediate scale demonstration R&D. Sandia Labs has made a proposal to DOE/Fossil to fund the government side of a CRADA with Ashland, but with budget cuts, it’s possible the funds might not be available.

The technology makes it possible to convert low grade hydrocarbon feedstocks (or fossil fuels) directly into Hydrogen and Carbon Monoxide (separate streams!) while sequestering impurities, even producing elemental sulfur. There is no stack, and no emissions.

Ashland wants this technology for its refineries, to deal with the sour crude it often has to deal with, to produce hydrogen, and to handle refinery “bottoms”, which are a costly disposal headache.

As a Hydrogen producer, HYMELT is estimated to be 30% cheaper than steam reforming, when using the same feedstock, i.e. fuel gas. It is much cheaper still, when the cost of the feedstock is removed, and a waste stream is used instead.

In case DOE doesn’t come up with the money, Ashland has asked Sandia to begin looking discretely for a partner interested in other fields of use, and who could put up $800k/year for 3 years, leveraging the many $ millions that Ashland has spent and committed.

We are the first to hear this story. Please handle with discretion, and do not discuss outside your company.

Contact is Al Sylwester, Sandia Tel # 505-844-8151

or call me

Ed Beardsworth 415-328-5670

 

Diamond Like Coatings (DLC) on Large Objects

with Plasma Source Ion Implantation.

(LANL)

Based on an invention at the Univ of Wisc from the early 80’s, Los Alamos has developed the capability to cost-effectively put DLC on large objects of arbitrary shape without preheating, and with a high degree of intrinsic adherence. It is the subject of a $14 million crada with GM for automotive applications.

DLC has been viewed almost entirely as a means to prevent wear . However, Los Alamos recently published a paper showing a many-fold improvement in corrosion resistance (done for a neutrino detection experiment!).

This could fulfill a personal vision of mine of many years that diamond coatings would be a major breakthru for turbine blades, or any component subject to wear or corrosion. The only utility interest to date has been by EPRI, to prevent fouling of nuclear power plant venturis, but funding isn’t available!

Los Alamos hadn’t been thinking in terms of other utility industry applications until we spoke. A joint development effort with utilities, Lawrence Berkeley Lab and possibly a vendor would be a brand new initiative. Los Alamos is already active in setting up “vertical consortia” to apply this technology in other industries, and would be very interested in working with us.

Please call me if you’re interested in pursuing this.

Ed Beardsworth 415-328-5670

 

MICRO (MINI?) SMES

Both Sandia and Los Alamos seem to have a hand in this program to build a SMES unit that would be about 10x larger than Superconductivity, Inc.’s unit, and smaller than the B&W/Anchorage device. The application is Power Quality for industrial customers, and/or at the substation level — on the order of 10’s of MW for seconds. This is seen as a development project, not a research one, with the goal to learn if such a device is the solution to an industry problem.

CRADA negotiations are underway with one utility already, however there may be (and I feel there ought to be) a way for other utilities to participate, if only by providing modest funding for a seat at the table.

Please call me if you’re interested in pursuing this.

Ed Beardsworth 415-328-5670

 

PEM Fuel Cell

(LANL)

Los Alamos has the oldest ongoing program in PEM, and some key breakthroughs in lowering the cost (by reducing the Pt catalyst requirement, and new designs and fabrication methods), and overcoming sensitivity to impurities. They also are working with an unidentified major company who’s supplying a new membrane, different from Dupont or Dow’s, and less expensive.

They believe PEM can “leapfrog” the high temperature fuel cell technologies (MC, SO) in stationary applications, which will be much easier than mobile ones (the conventional view of where PEMs belong). At least 10-15 companies large and small are working on PEM in one form or another (not just Ballard!). Los Alamos has lab units at 100 sq. cm. reliably demonstrating their technology.

There is no utility “user group” for PEM, and one is needed. We can be instrumental in forming one with Los Alamos, the other labs, and their other industrial partners. There’s also the obvious opportunity to stake out a piece of this very interesting nontraditional approach to fuel cell technology.

This group was initially wary of spending time on visitors unless it could lead to something. After I described the strategic interest utilities have in fuel cells and the new kinds of business initiatives utilities are taking, the PI offered to prepare a brief discussion paper, outlining their ideas and how utilities could participate.

Please call me if you’re interested in pursuing this, and want a copy of the paper when I receive it. Ed Beardsworth 415-328-5670

 

Catalytic Reduction of NOx

by microwave assisted chemistry

LANL

Los Alamos has demonstrated at lab scale a means to remove NOx from a simulated gas stream, and need to implement it at a utility or factory/process that generates NOx.

Carbonaceous material first adsorbs the NOx, and then the bed is purged by heating it with microwaves with O2 (an adsorb/desorb cycle).

One interesting implication– with this capability to remove NOx, it may be possible to operate boilers at higher temperature, for better overall optimal performance.

This was internally funded at the lab, and DOE/Fossil is interested.

Contact is Ed Joyce, 505-665-2964