Cleantech Venture Forum II

Cleantech Venture Network’s second venture forum in San Franciso, Apr 30- May1 was a great success. Over 260 people in attendance included mostly investors, along with representatives of the 23 companies selected to present (from over 200 companies that applied).

You may recall reading about Cleantech Venture Network in UFTO Notes 26 July, 1 October ’02.

The surge of interest in cleantech was noteworthy. Many new faces were there, some of them very prominent VC firms whose usual sectors of IT and telecom have lost their lustre. These investors seem to be checking out energy tech and cleantech to see what the opportunities are, and whether it might represent a “next big thing”. Some of them are actually doing deals, too. Panels sessions discussed this very trend, while others went into water, Asia, and the overall outlook for investing in cleantech. The new issue of the Venture Monitor, due in a couple of weeks (for members only!) will have details from the panel discussions.

The presenting companies ranged from a successful biopesticide company (better, cheaper, safer than chemicals…really), to several hydrogen, fuel cell, and solar PV companies, and some water and waste management. (The PV companies were described in another UFTO Note just recently). Here’s the list. (If you want additional information, please contact me. I’m not including details here in the interests of brevity, but I can send you a version with longer descriptions, as well as individual company’s own writeups. Some may appear in future notes.)

AgraQuest, Inc. – Natural pesticides
aqWise – Wastewater treatment retrofit increases throughput
CellTech Power – Fundamentally new solid oxide fuel cell acts like a refuelable battery.
FiveStar Technologies – Advanced materials via cavitation technology
Global Solar – thin film PV in production
H2Gen – On-site hydrogen generation via small scale steam methane reforming
Hoku Scientific, Inc – PEM fuel cell membrane to replace Nafion
HyRadix Inc. ? Small scale hydrogen generators via thermal reforming
Integrated Env. Technologies – Waste Treatment via Plasma
iPower – Distributed Generation ? New genset
Mach Energy ? Energy management services to commercial buildings
PolyFuel Inc – Direct methanol fuel cell (DMFC) systems
PowerTube – Geothermal powerplant downhole
Powerzyme – Enzymatic fuel cell
PrecisionH2 – Hydrogen, power and carbon from methane, via cold plasma (no CO2!)
Primotive – unique electric motor/generator
QuestAir – Gas purification via pressure swing absorption
Raycom Technologies – Thin film solar cells via high volume sputter coating
Sensicore – Sensors monitor water quality cheaply
Solaicx – Polycrystalline silicon PV
Solicore – Thin film lithium batteries
Verdant – Wave power via underwater windmills

Here’s a definition of “Cleantech”, from the website:
**The concept of “clean” technologies embraces a diverse range of products, services, and processes that are inherently designed to provide superior performance at lower costs, greatly reduce or eliminate environmental impacts and, in doing so, improve the quality of life. Clean technologies span many industries, from alternative forms of energy generation to water purification to materials-efficient production techniques.**

I strongly suggest you consider an investor membership, for dealflow, Venture Monitor, networking and other benefits. (http://www.cleantechventures.com). The next Forum will be held this Fall in New York.

New New Solar PV

There are a number of fascinating new developments in the world of solar photovoltaic cells, which represent major shifts from the usual crystalline silicon cell based on semiconductor technology, which supplies as much as 80% of the market today (referring to wafers sliced from large single crystal or polycrystalline ingots). Here is a quick overview. Much more information exists on most of these topics.

Evergreen Solar
Evergreen has one of most mature of the new approaches, and is now a growing public company (symbol ESLR), ramping up production of its unique string ribbon Silicon cell. The Evergreen cell is fully equivalent on a functional basis, but is considerably than the ingot slice method. Evergreen anticipates sales of $6-9 million in 2003. The website does a good job explaining the whole story. http://www.evergreensolar.com/

Solar Grade Silicon
In March, Solar Grade Silicon LLC announced full production of polycrystalline silicon at its new plant in Washington, the first ever plant dedicated wholly to producing feedstock for the solar industry. They supply the purified silicon that is then melted and made into single crystals, i.e. in large ingots, or Evergreen’s ribbon. In the past, solar cell makers relied on scraps from the semiconductor industry, which won’t be sufficient to handle the growth in the PV industry.
http://www.newsdata.com/enernet/conweb/conweb85.html#cw85-5

Spheral (ATS Automation)
In one of the stranger sagas of solar, you may recall that in 1995, Texas Instruments finally gave up on a major development program to develop “Spheral” solar cells, an effort they’d devoted many years and many dollars to (with considerable support from DOE). Spheral technology comprises thousands of tiny silicon spheres, bonded between thin flexible aluminum foil substrates to form solar cells, which are then assembled into lightweight flexible modules. TI’s goal was to develop a manufacturing process that would drive PV costs to $2/watt. Ontario Hydro Technologies acquired the technology, set up manufacturing in Toronto, and sold some systems, but in 1997, reorganizations and a return to basics led them to sell it off. Apparently dormant since then, in July 2002 ATS Automation announced it had acquired the technology, set up a subsidiary, and was scaling up production with plans to be in commercial production this year. The Canadian government put in nearly $30 Million. The jury is out on this one. For the story, go to: http://www.spheralsolar.com/

Thin Film-CIGS
Commercially produced thin film PV falls into 3 general categories, Cadium Telluride, Amorphous Silicon, and CIGS (Cu(In,Ga)Se2). The first two technologies are struggling, with BP’s notable exit last November from both. CIGS is having instances of some apparent success and continuing development efforts, and enjoys strong support at NREL, a true believer. There are production facilities doing CIGS as well as innumerable development efforts around the world to make it cheaper and more efficient. CIGS has the unique feature of becoming more efficient as it ages.

Global Solar**
Global, partly owned Unisource, the parent of Tucson Electric, is selling thin film CIGS modules to the military, commercial and recreational markets. One product is a blanket a soldier can unfold on the ground. Current production capacity is 2.3 MW per year, and they’re fundraising to expand to 7.5 MW. http://www.globalsolar.com

Raycom**
Among the new entrants, Raycom is a startup in Silicon Valley, led by veterans of thin film coating for disk drives and optical filters. They believe their experience (and existing equipment) will enable them to avoid the long and painful development cycles that have traditionally characterized the solar PV industry, and be in production in less than 2 years. Their secret is “dual-rotary magnetron sputtering” a patented process that has already proven effective in high volume manufacturing. Cost targets are under $1 per watt. They also have brought a fresh eye to the formulation of CIGS, and see ways to make it without cadmium, which is highly toxic. Raycom produced their first working cells in a matter of months. They are in the midst of fundraising. One might observe that this is a rare instance where someone comes to PV from manufacturing instead of science. Normally, people develop PV technology in the lab and then endeavor to become manufacturers. This time it’s the other way around. [To see the magetron sputtering technology, go to:
http://www.precisdesign.com/solutions/technologies.html]
Contact David Pearce 408-456-5706, dpearce@rcomtech.com

Konarka
Konarka has attracted a great deal of attention and sizable VC participation (funding round Oct 02) with promises of a way to commercialize the “Gratzel” cell, which Dr. Michael Grätzel developed and subsequently patented in the 1990’s. The core of the technology consists of nanometer-scale crystals of TiO2 semiconductor coated with light-absorbing dye and embedded in an electrolyte between the front and back electrical contacts. Photons are absorbed by the dye, liberating an electron which escapes via the TiO2 to the external circuit. The electron returns on the other side of the cell, and is restores another dye molecule. The jury is out on this one, whether it’ll happen quickly as the company and its investors hope, or will there be a long road ahead. One of the biggest issues since this idea was first tried has been the stability of the organic dyes. http://www.konarkatech.com/

For a good discussion of dye-sensitized cells, see this pdf:
http://www.polymers.dk/research/posters/Dye-sensitisedKW.pdf

Nanosys
This Palo Alto based company has a long list of goals for its nanotechnology, ranging from chemical/biological sensors, to electronics and photovoltaics, based on formulations of nanowires, nanotubes, and nanoparticles. Their idea for PV is reportedly to embed nanorods of photosensitive material in a polymer electrolyte, on a principle not unlike Konarka’s. On April 24, they announced an amazing $30 Million VC funding. You have to wonder about this one, i.e. if the nano-hype has taken over, and how successful they’ll be about solar as compared with the other areas.
http://www.nanosysinc.com

The technology was originally developed at Lawrence Berkeley Lab:
http://www.lbl.gov/Tech-Transfer/collaboration/techs/lbnl1810.html
http://www.lbl.gov/msd/PIs/Alivisatos/02/02_1alivisatos.html

NanoSolar
Also Palo Alto based, this one is in stealth mode. The basic idea is similar to Nanosys, but they are focused only on solar. They also incorporate technology licensed from Sandia for nano-self-assembly to align the nanorods perpendicular to the surface, which is supposed to make a big difference in the efficiency. (Nanosys’s nanorods are said to be randomly oriented in clumps.) NanoSolar has some very famous investors, who are maintaining an extremely low profile.

Solaicx**
Solaicx is a new spinout from SRI International, and has a way to make polycrystalline silicon cell material in a continuous process atmospheric-pressure furnace. Their presentations and materials tell very little about what they have, making it pretty hard to judge.

Solaria
This is a very unusual concentrator story involving the use of variable “graded” index glass optics. The work started in the mid 80’s. Solaria Corporation was formed in 1998 by the founders and former management from LightPath Technologies, Inc., Albuquerque, New Mexico. Solaria holds the exclusive license from LightPath to use its proprietary GRADIUM® optics in the field of solar energy. http://www.solaria.com/

** These companies presented at the Cleantech Venture Forum in San Francisco, April 30.

Photolytic Hydrogen from Sunlight

Researchers have been working on a process that uses sunlight to produce hydrogen by splitting water directly. To understand photoelectrolysis, think of a PV cell underwater, where the electrochemical energy produced is immediately used to electrolyze water, instead of creating an external current. The light hits the cell, and hydrogen bubbles appear on one side of the cell, while oxygen appears on the other side, just as in electrolysis. (Of course one could use a PV cell to power an electrolyzer, but the idea here is to make a simpler and more economical system.)

The interface between the water (electrolyte) and certain semiconductor materials forms a diode junction that generates power–and thus does the electrolysis. The presence of catalysts at the surface can also help with the energetics and kinetics of the reactions that form the hydrogen and oxygen, respectively.

One of the problems is that the minimum voltage for splitting water (1.3 volts) is higher than a photocell can easily produce, and high-bandgap materials capable of generating enough voltage can utilize only ultraviolet light, which is a small fraction of the solar spectrum.

Work at NREL and the University of Hawaii has focused on developing multijunction cells which use more of the solar spectrum. These additional layers are sandwiched inside the basic cell that does the photolysis, and provide a boost to the electro potential available to do the water splitting. The electrochemistry and solid state physics of these devices are very complex. One of the main challenges has been to come up with materials and configurations that will be less susceptible to corrosion from the electrolyte and which will last long enough to be practical. Efficencies above 12% have been seen (i.e., the energy value of the hydrogen produced vs. the amount of incident sunlight. (See the 2002 H2 DOE Program Reviews–ref. below. Also, the 2003 meeting in May will have new updates.)

Researchers at the University of Duquesne published an important development in Science Magazine last September. Titanium dioxide is known to be a cheap and stable photocatalyst for splitting water, but hydrogen yields were always less than 1% (due to the high band gap of the material). The new development involved preparing the material in a flame, introducing carbon into its structure. Cells using this new material saw a factor of 10 increase in hydrogen production. The University is actively seeking licensees or partners to pursue this technology. (Contact me for details).

The design goal at NREL and Hawaii is to come up with a monolithic device that needs no external electrical connections. The simple version of the Duquesne cell requires an external bias power source (which could be powered by a fuel cell using some of the hydrogen produced), but which would still be a net producer of power. Net yields are already at 8.5%, and are expected to improve.

Though commercial devices are a ways off, photosplitting of water is another process that could supply hydrogen by purely renewable means.

References:

2002 Hydrogen Program Review Meeting – Renewable Production Electrolytic Processes
http://www.eere.energy.gov/hydrogenandfuelcells/hydrogen/annual_review2002.html#Renewable

Science…27 Sept 02
“Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”

Science 17 April 98
“A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting”

( I can provide pdf copies of the Science articles).

T&D R&D Gaining Attention

Here are some high-level pointers to an array of resources related to ongoing developments in T&D research, sponsored by DOE, NSF and the CEC (Calif Energy Commission), which demonstrate a new level of attention to grid reliability and security.

Let me know if I can be helpful digging deeper into any of these areas.

~~~~~~~~~~~~~~~

DOE – Office of Electricity Transmission and Distribution

The Dept. of Energy will announce, perhaps as early as next week, the creation of a new office for T&D reporting directly to the Secretary, as recommended in the National Transmission Grid Study* done last year. The Office of Electricity Transmission and Distribution will start with a budget of $85 million, however all but $8 or 9 million is already committed to earmarks ($27 M) and high temperature superconductors ($40 M). The office will be headed by Jimmy Glotfelty, an assistant to Abrahams. The staff currently in the Transmission Reliability Program in EERE will move over to the new office.

Meanwhile next week, a new Center will be dedicated at Oak Ridge:
http://www.ornl.gov/ORNL/Energy_Eff/nttrcdedication.htm

The dedication of the National Transmission Technology Research Center (NTTRC) and the Powerline Conductor Accelerated Facility (PCAT), the first working facility of four planned for the Center, will be held March 25. The Center, sponsored by ORNL, DOE, and TVA, will test and evaluate advanced technologies, including conductors, sensors and controls, and power electronics, under a wide range of electrical conditions without jeopardizing normal operations. The first component of the NTTRC, the PCAT facility, is initiating its first test protocol with 3M’s advanced Aluminum Conductor Composite Reinforced conductor.
— Overview of NTTRC:
http://www.ornl.gov/ORNL/Energy_Eff/PDFs/NTTRCoverview.pdf

The existing Transmission Reliability Program was reestablished by Congress in 1999 to conduct research on the reliability of the Nation’s electricity infrastructure during the transition to competitive markets under restructuring.

http://www.eere.energy.gov/der/transmission/
Go to “Documents and Resources” for recent studies and materials.

*(May 2002 http://www.energy.gov/NTGS/reports.html)

~~~~~~~~~~~~~~~

Calif Energy Commission

The CEC Public Interest Energy Research program (PIER) has a very active effort underway in Transmission Research. They recently released a 140 page “Electricity Transmission Research and Development Assessment and Gap Analysis – Draft Consultant Report” — now available online along with other materials and presentations:
http://www.energy.ca.gov/pier/strat/strat_research_trans6.html

This report is one of two reports which were discussed at a public workshop held March 12, 2003 at the CEC.

~~~~~~~~~~~~~~~

National Science Foundation
Directorate for Engineering, Elec. And Communications Systems
http://www.eng.nsf.gov/ecs/

1. Workshop on Modernizing the Electric Power Grid, Nov 02
— http://eent1.tamu.edu/nsfw/index.htm

Starting on slide 14 of James Momoh’s presentation there is a good overview of the EPNES initiative (next item)
http://eent1.tamu.edu/nsfw/documents/Presentation_JMo.ppt

2. NSF/ONR Partnership in Electric Power Networks Efficiency and Security (EPNES)
http://www.nsf.gov/pubs/2002/nsf02188/nsf02188.htm

This solicitation seeks to obtain major advances in the integration of new concepts in control, modeling, component technology, social and economics theories for electrical power networks’ efficiency and security. It also encourages development of new interdisciplinary research-based curriculum… Proposals were due Feb 3.

3. The Power Systems Engineering Research Center (PSERC)
PSERC is an NSF Industry/University Cooperative Research Center, involving a consortium of13 universities working with government and industry. The website has a huge array of reports and publications.
http://www.pserc.wisc.edu/

For the NSF’s “fact sheet”, see:
http://www.nsf.gov/pubs/2002/nsf01168/nsf01168ee.htm

Preheat Standby Diesels with Heat Pump

(Many of the stories we’ve been looking represent new technology with big potential impact, but whose commercial availability may take a while. Here’s something very much here and now that may appear to be a small niche, but which could be a valuable feature to be able to offer customers, and even to apply on a utility’s own facilities.)

“Reduce the cost and increase the reliability of a standby generator, with no initial capital outlay.”

For standby diesels to start reliably, they need to be kept warm. Standard practice (for 200 kw to 2.5MW gensets) is to attach an electric resistance heater to maintain a temperature of 100-140 degF. As a standard practice, nearly all engines have such heaters, installed either by the engine manufacturer or the distributor. (Watlow and Kim HotStart have most of this market.) Heat can be applied to the oil (which is kept flowing and at pressure), the engine coolant and of course to the fuel itself (which can turn to jelly in cold weather).

For an engine that has to be ready to go at any time with no warning, this electric load (2-8 kw) is (or should be) on all the time, and can as much as $6-8000 per year or more. It’s usually a hidden cost, buried in a facility’s overall power bill, and it’s not something engine makers talk about. Many owners and operators don’t even know the heaters are there, and O&M agreements don’t usually cover them. The average life of a heater is typically about 18 months. When it fails, it might not be noticed, leaving a cold engine at risk. Replacing heaters adds to the large costs for power — the biggest single operating cost of owning a standby generator.

If an engine is started cold, it might not even start. If it does start, and especially if it is heavily loaded immediately, heavy wear and tear will come from running cold. Engine life is shortened, and overhauls come sooner. A bad episode can wreck the engine right then and there. (One distributor for CAT told me they recommend keeping an engine warm all the time, and this includes prime power applications, not just standby/emergency. In some applications, codes require it.)

So there are three main issues: the cost for power, wear and tear from cold starts, and the unreliability — which can undercut the reasons for having standby generators in the first place.

To solve these problems, Energy Resources Management (ERM), Tampa, Florida, sells a specialized heat pump manufactured by Trane.

The 1.5-ton DH-12 air source heat pump saves 80% of the energy and cost of heating. Equally important, the heat pump (primary) runs in series with the heaters (secondary) to provide the redundant heating source needed to protect diesel engines from cold-start risk factors. In addition, resistance heater replacement costs and emissions are reduced (i.e., emissions from utility generation of the power saved).

ERM offers a shared energy savings program. Performance measurement and contracting allows them to provide the heat pump through a turnkey operation with no capital investment by the owner. Trane manufactures, installs, and services the heat pump. Successful installations include public and private sector entities such as Atlanta Hartsfield Intl Airport, MBNA, Bank of America, and the New York Stock Exchange. Municipal utilities and waste water treatment facilities have been early and frequent adopters.

While the savings for one engine may not represent a large amount of revenue, there are a lot of engines out there that could use this (and shared savings revenues continue year after year). There is also the improvement to quick start reliability to consider. This would seem to be a good fit for many C&I customers and utilities themselves.

ERM is looking for customers, of course, and for partners, reps, distributors, etc. to offer the program across the country. Call me for more information.

Contact:
Nicholas Colmenares, President
Energy Resources Management, LLC
Tampa, FL
813-876-1113 ERMnow@aol.com
http://www.ermenergy.com

DG Update

Has DG (distributed generation) gone quiet, or mainstream, or both? Meanwhile, the DOE program has not done well in the proposed budget. Congressional earmarks are taking up so much money that DOE is forced to cancel some ongoing DG applications projects.

Here are some developments and updates.

– DUIT Facility Up and Running
– CADER Meeting Jan. 2004
– IEEE 1547 Interconnection Standards
– PG&E DG Interconnection program

^^^^^^^^^^^^

Distributed Utility Integration Test Facility (DUIT)

The Distributed Utility Integration Test (DUIT) is the first full-scale, integration test of commercial-grade, utility grid interactive Distributed Energy Resources (DER) in the U.S. DUIT addresses a key technical issue: electrical implications of operating multiple, diverse DERs at high penetration levels within a utility distribution system. DUIT’s test plan is intended to focus on grid interaction, integration and aggregation issues, not on DER technology itself.

After an exhaustive study of program goals and alternative sites, DOE selected the facilities at PG&E’s Modular Generation Test Facility in San Ramon, CA as the home of the new DUIT Facility. Pre existing buildings, labs and professional staff helped make the choice, along with the adjacent test substation and high-current yard. The site held an official opening ceremony in August 2003.

The facility offers a realistic yet controlled laboratory environment, enabling testing of normal and abnormal operational conditions without interfering with a customer’s electric service. DG equipment at the site is commercially available and all on loan to the project from the vendors: Inverters, rotating machinery, and generation and storage devices. DUIT provides a full-scale multi-megawatt implementation, testing and demonstration of distributed generation technologies in a realistic utility installation.

Utilities may want to take note that DUIT will be confirming and testing to the newly passed IEEE 1547 Interconnection standard, which is expected to be adopted by a large number of state regulators and legislators. Similarly, for California, DUIT will be testing to the Rule 21 document.

To inquire about prospective DUIT project participation, technical specifications, test plans, project plans or the DUIT white paper, contact the DUIT Project Team. Reports will be issued by CEC and other sponsors beginning this Summer, and information will be available on the DUIT website:
http://www.dua1.com/DUIT

Contact:
Susan Horgan, DUIT Project Leader
Distributed Utility Associates
925-447-0625 susan@dua1.com

For the complete history:
"DUIT: Distributed Utility Integration Test", NREL/SR-560-34389, August 2003 (250 pages)
http://www.nrel.gov/docs/fy03osti/34389.pdf

^^^^^^^^^^^^

CADER (California Alliance for Distributed Energy Resources)

The 2004 DG conference in San Diego on January 26-28, 2004 had 202 attendees.
http://www.cader.org/2004Conference/Conference2004.html

Presentations are posted on CADER’s website at www.cader.org or go directly to:
http://www.cader.org/2004Conference/2004Presentations/Presentations.html

The draft DG-DER Cost and Benefit Primer was developed as a first step to support the discussions at the "Costs and Benefits of DER" session at the Conference on January 26-28, 2004. Comments about the document can be provided via the CADER member list-server to reach all members.
http://www.cader.org/2004Conference/Papers.html

^^^^^^^^^^^^

IEEE 1547 Update

As you know, "IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems" was approved by the IEEE Standards Board in June 2003. It was approved as an American National Standard in October 2003. (available for purchase from IEEE: http://standards.ieee.org

SCC21 develops and coordinates new IEEE standards and maintains existing standards developed under past SCC21 projects. These include the original 1547, along with the four spinoff efforts.

> P1547.1 Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems (EPS) (draft standard)

> P1547.2 Draft Application Guide for the IEEE 1547 Standard

> P1547.3 Monitoring, Information Exchange, and Control of Distributed Resources Interconnected with EPS (draft guide)

> P1547.4 Design, Operation, and Integration of Distributed Resource Island Systems with EPS (draft guide)

#1 and 2 have drafts out to their working groups for review. #1 expects to be ready for ballot early in 2005.
#3 has just completed a draft.
#4 has just been approved as a new initiative, and will be organized over the coming summer.

Complete information is available at:
http://grouper.ieee.org/groups/scc21/wg.html

The next meeting of the IEEE 1547 series working groups will be April 20-22, 2004 in San Francisco. The P1547.1, P1547.2, and P1547.3 working groups will meet concurrently 8 a.m. to 5 p.m. each day. Working groups will be meeting separately – no plenary session is planned. Details at:
http://grouper.ieee.org/groups/scc21/1547.1/1547.1_archives.html

^^^^^^^^^^^^

PG&E DG Interconnection program

PG&E held a Distributed Generation (DG) Workshop last December 10. The free event provided PG&E customers and the DG community with practical information on how to navigate the various Electric Rule 21 application and interconnection review processes – from initial application through to permission to parallel with PG&E’s electric distribution system. The focus of the workshop was to communicate PG&E’s internal DG processes and interconnection technical requirements to the DG community. (For details on California’s Rule 21, see:
http://www.energy.ca.gov/distgen/interconnection/california_requirements.html)

PG&E has set up an entire cross-company team to deal with all aspects of DG interconnection in a coordinated way. They appear to be very committed to low hassle, low cost, minimum time for DG projects. A great deal of information about PG&E’s program, (including the 117 page powerpoint from the workshop) is available at: http://www.pge.com/gen

Jerry Jackson, Team Leader
415-973-3655 GRJ4@pge.com

PS- Jerry’s office generously offers to send a hard copy on request of the nearly 2 inch thick binder that was handed out at the workshop.

———CALIFORNIA RULE 21 ——-
CPUC: http://www.cpuc.ca.gov/static/industry/electric/distributed+generation/index.htm
CEC: http://www.energy.ca.gov/distgen/index.html

After passing Rule 21 in Dec 2000, California PUC established, and the CEC coordinated, a working group of all DG stakeholders. Electric Rule 21 Working Group meetings have been held about once a month since mid 2001. The purpose is to establish procedures and work through issues to simplify and expedite interconnection projects. (Agenda and minutes are at:
http://www.energy.ca.gov/distgen/interconnection/work_group.html)

California Interconnection Guidebook
Publication # 500-03-083F
PDF file, 94 pages, 1.1 megabytes) online November 13, 2003.
http://www.energy.ca.gov/distgen/interconnection/guide_book.html

The Guidebook is intended to help a person or project team interconnect one or more electricity generators to the local electric utility grid in California under California Rule 21. Rule 21 applies only to the three electric utilities in California that are under jurisdiction of the California PUC: PG&E, SCE, and SDG&E. The Guidebook is written as an aid to interconnection in these utility areas. It may also be useful for interconnection in some municipal utility areas with interconnection rules resembling Rule 21, principally Riverside, SMUD, and the LADWP.

^^^^^^^^^^^^

Recommended: DG Monitor, a free email newsletter from Resource Dynamics Corp. Archive and subscription at:
http://www.distributed-generation.com/

Bipolar NiMHydride Battery

Electro Energy, Inc. (EEI) has developed a new type of rechargeable nickel-metal hydride (BP Ni-MH) battery using a bipolar configuration. A combination of unique materials, a design, and a production process make possible a lower cost technology which out-performs present commercial nickel-metal hydride and lithium polymer batteries in both power and energy.

A key advantage of a bipolar format is that the current path is the shortest possible. In a series arrangement, current passes directly through the separator, across its entire area. This eliminates the need for lugs and cell interconnections, with the additional internal resistance, sealing problems, and structure they bring.

The classic bipolar design (similar to most fuel cell stacks) involves a stack of metal plates, each with an anode applied to one side and a cathode to the other. For batteries, the problem of sealing the edges has proven difficult. EEI’s solution is to make each cell a stand-alone sealed flat wafer. The wafer cells are stacked up to make a higher voltage package.

EEI has developed and patented both the design of their battery and the production process for its manufacture. Prototypes exist and have been tested extensively. The US Air Force is evaluating units for use on F16 (and NAVAIR for the F18) jet fighters (1/3 the weight and volume of what they’re using now).

Conventional Ni-MH rechargeable batteries represent a $3 billion market currently, and EEI expects to dominate that and other markets, because their battery will deliver more energy and power per unit volume and per unit weight, at lower cost. Cycle life is in excess of 1000 cycles in deep discharge use, and over 12,000 cycles at 40% discharge. Cost will be 1/2 that of Li -Ion, and there are no toxics substances. The technology will be very competitive in the applications requiring high voltage and power, e.g. hybrid vehicles.

The company is seeking equity investment, having received over $15 million in government and other grants, particularly from DOD and DOE. A full business plan is available.

Contact: Mike Eskra, President & COO
Electro Energy Inc, Danbury CT
203-797-2699 meskra@electroenergyinc.com
http://www.electroenergyinc.com

Cell Details
As a departure from classic cylindrical or prismatic battery packaging approaches, EEI’s is a flat, wafer, bipolar design for the nickel-metal hydride chemistry. Individual flat wafer cells have outer contact faces with one positive electrode, a separator and one negative electrode. The contact faces serve to contain the cell and make electrical contact to the positive and negative electrodes. The the two electrode faces are completely sealed at the edge to contain the potassium hydroxide electrolyte. To make a multi-cell battery, identical cells are stacked one on top of each other such that the positive face of one cell contacts the negative face of the adjacent cell resulting in a series-connected battery. Power is taken off at the ends of the cell stack. An outer container holds the cells in compression and provides structural integrity for the stack.

This design has several advantages. The need for conventional terminals, tabs, current collectors, and cell containers is eliminated. Use of available space is maximized, with the headspace for tabs and terminals required in conventional cells eliminated. The path that current has to move within the electrodes and from cell to cell is minimized, since the current flows out on the entire surface of the electrodes. Battery impedance is reduced, making this design particularly effective for high rate, power applications. The wafer stack has excellent thermal management properties. Cells act like cooling fins, conducting the heat out to the side. Compared to conventional cylindrical and prismatic packaging designs, there is considerable reduction in cost, weight, and volume.

Bipolar NiMHydride Battery

Subject: UFTO Note – Bipolar NiMHydride Battery
Date: Fri, 28 Feb 2003

Electro Energy, Inc. (EEI) has developed a new type of rechargeable nickel-metal hydride (BP Ni-MH) battery using a bipolar configuration. A combination of unique materials, a design, and a production process make possible a lower cost technology which out-performs present commercial nickel-metal hydride and lithium polymer batteries in both power and energy.

A key advantage of a bipolar format is that the current path is the shortest possible. In a series arrangement, current passes directly through the separator, across its entire area. This eliminates the need for lugs and cell interconnections, with the additional internal resistance, sealing problems, and structure they bring.

The classic bipolar design (similar to most fuel cell stacks) involves a stack of metal plates, each with an anode applied to one side and a cathode to the other. For batteries, the problem of sealing the edges has proven difficult. EEI’s solution is to make each cell a stand-alone sealed flat wafer. The wafer cells are stacked up to make a higher voltage package.

EEI has developed and patented both the design of their battery and the production process for its manufacture. Prototypes exist and have been tested extensively. The US Air Force is evaluating units for use on F16 (and NAVAIR for the F18) jet fighters (1/3 the weight and volume of what they’re using now).

Conventional Ni-MH rechargeable batteries represent a $3 billion market currently, and EEI expects to dominate that and other markets, because their battery will deliver more energy and power per unit volume and per unit weight, at lower cost. Cycle life is in excess of 1000 cycles in deep discharge use, and over 12,000 cycles at 40% discharge. Cost will be 1/2 that of Li -Ion, and there are no toxics substances. The technology will be very competitive in the applications requiring high voltage and power, e.g. hybrid vehicles.

The company is seeking equity investment, having received over $15 million in government and other grants, particularly from DOD and DOE. A full business plan is available.

Contact: Mike Eskra, President & COO
Electro Energy Inc, Danbury CT
203-797-2699 meskra@electroenergyinc.com
http://www.electroenergyinc.com

Cell Details

As a departure from classic cylindrical or prismatic battery packaging approaches, EEI’s is a flat, wafer, bipolar design for the nickel-metal hydride chemistry. Individual flat wafer cells have outer contact faces with one positive electrode, a separator and one negative electrode. The contact faces serve to contain the cell and make electrical contact to the positive and negative electrodes. The the two electrode faces are completely sealed at the edge to contain the potassium hydroxide electrolyte. To make a multi-cell battery, identical cells are stacked one on top of each other such that the positive face of one cell contacts the negative face of the adjacent cell resulting in a series-connected battery. Power is taken off at the ends of the cell stack. An outer container holds the cells in compression and provides structural integrity for the stack.

This design has several advantages. The need for conventional terminals, tabs, current collectors, and cell containers is eliminated. Use of available space is maximized, with the headspace for tabs and terminals required in conventional cells eliminated. The path that current has to move within the electrodes and from cell to cell is minimized, since the current flows out on the entire surface of the electrodes. Battery impedance is reduced, making this design particularly effective for high rate, power applications. The wafer stack has excellent thermal management properties. Cells act like cooling fins, conducting the heat out to the side. Compared to conventional cylindrical and prismatic packaging designs, there is considerable reduction in cost, weight, and volume.