UFTO NOTES 2002

08 Dec 2002 UFTO Note – 2002 Fuel Cell Seminar
05 Dec 2002 UFTO Note – H2 from Multiple Fuels & Polymeric Membrane Separation
15 Nov 2002 UFTO Note – H2 Production Adapts Smelting Technology
03 Nov 2002 UFTO Note – Optic Fiber Inside Transm Cable Measures Temperature
29 Oct 2002 UFTO Note – Solid State Power Breakthrough
14 Oct 2002 UFTO Note – Thermoelectrics Revisited
01 Oct 2002 UFTO Note – Short Subjects
06 Sep 2002 UFTO Note – Ice Mitigation
19 Aug 2002 UFTO Note – Staged Combustion with Nitrogen-Enriched Air (SCNEA)
05 Aug 2002 UFTO Note – Utility Telecom Has a Future-PurOptix
01 Aug 2002 UFTO Note- E-lecTrade Enables Trading of Structured Products
12 Jul 2002 UFTO Note – EESAT’02 Electricity Storage Conference
08 Jul 2002 UFTO Note – Digital Hubbub-IEEE Spectrum
10 Jun 2002 UFTO Note-DOE H2&FC Reviews
24 May 2002 UFTO Note – NREL VISIT
20 May 2002 UFTO Forward- NRECA DG tools
17 May 2002 UFTO Note – Small scale Gas to Liquids (GTL)
25 Apr 2002 UFTO Note – PowerWAN PLC to Solve Last-Mile
22 Mar 2002 UFTO Note – New Small Turbines, 600 Watts to 2 MW
16 Feb 2002 UFTO Note – IEEE 1547 Interconnection Working Group
15 Feb 2002 UFTO Note – DOE Distributed Power Review
26 Jan 2002 UFTO Note – Fluid Mechanical Energy Recovery
23 Jan 2002 UFTO Note – 2001 IEEE T&D Expo
17 Jan 2002 UFTO Note – NEETRAC R&D Focused on Power Delivery

2002 Fuel Cell Seminar

Fuel Cell Seminar http://www.gofuelcell.com
Nov 18-21, Palm Springs, CA

The Fuel Cell Seminar has been held every two years* since 1978. Until recently, it’s been essentially a scientific forum. The 2000 event (in Portland OR) saw a major change into a full blown trade show. That trend continued this time, with 50% larger attendance (3000) and many more than twice the number of exhibitors (125). The event is very international, with huge contingents from Europe and Asia. For the first time, simultaneous translation in Japanese was provided. (*From now on, they’re going annual–the next one will be in Miami, Nov ’03.)

The mood this time, however, was distinctly different. Recall that January 2000 started with a runaway boom in stock prices and excitement over fuel cells. By November, that surge was still strong, and the event had the feel of a celebration. In contrast, this year the mood was almost grim, or at least very subdued. Beyond the effects of the wider economic doldrums, the reality has set in that cost and performance of fuel cell technology just aren’t there yet. Fuel cells are still years from being ready for a meaningful ramp-up in commercial market penetration. Investment bankers and venture capitalists, who were very much a presence in 2000, were few and far between this time.

A great many of the exhibitors were suppliers to the industry, offering membranes, catalysts, pumps and valves, test equipment, etc. Thus the comment that people were there to sell to each other, not to sell fuel cells to real customers. (The only customers appear to be governments–see below.) It is possible to spin this positively–companies like 3-M and Agilent wouldn’t be bothered if they didn’t see a big opportunity down the road. The large attendance could be viewed in the same light. The saying goes that it’s a matter of when, not if [that fuel cells will be a practical reality on a large commercial scale].

Keynote Address
S. David Freeman was blunt (as usual) in his keynote address–fuel cells have not achieved financial viability; the fuel cell car is a huge publicity stunt–not yet a practical reality; and distributed generation (via fuel cells) doesn’t have the political appeal that renewable energy enjoys. He urged the industry to pay more attention to the question of fuels for fuel cells, and suggested that it’s in everyone’s interest to deploy hydrogen burning IC engines, to build up the hydrogen infrastructure independent of and in parallel with fuel cell development.

Four keynote lectures followed:
– DOE Fossil Energy Fuel Cell Program (Victor Der for George Rudins)
FE spends $250 million/year for stationary fuel cell RD&D, mostly on SECA and FC-Hybrids. SECA is the initiative whose goal is $400/kw planar solid oxide fuel cell. Contracts have been awarded to four industry teams to pursue various technical strategies.
(http://www.seca.doe.gov/)

– Stationary Perspective (Jerry Leitman, Fuel Cell Energy)
Stationary plants are commercially available today, and offer dramatic efficiency and emissions improvements over engines and combined cycle plants.

– Transportation Perspective (Andrew Schell, for Ferdinand Panik, DaimlerChrysler)
Fuel cells in transportation are a necessity to gain the “freedoms” (i.e. of choice, from emissions, from oil dependence, etc). Applications will ramp up over the next 7 years to become truly commercial. New fuel insfrastructures must be deployed. (In January, DOE replaced the PNGV with FreedomCAR, concentrating on hydrogen and fuel cells http://www.ott.doe.gov/freedom_car.shtml).

– Portable Perspective (Laryy DuBois, SRI)
There is no Moore’s Law for batteries. The price paid per kw is high compared with large scale power, creating an opportunity for fuel cells. Drivers include longer runtime, fast recharge, unlimited recharge, etc. A dozen companies at least plan to be selling products sometime in the next 3 years. Concentration is on direct methanol or PEM, with at least one SOFC to run on butane. The competition isn’t standing still, with advances in batteries and ultracaps, as well as work on nano-heat engines and RF scavenging. (I have a pdf of this presentation-2MB)

– Fuel Perspective (Don Huberts, Shell Hydrogen)
Stationary, Transportation and Portable each have different requirements for refueling infrastructure, and no single answer will suffice. There needs to be a mix of technologies, primary energy sources, and delivery means.

Program Overviews
A series of presentations outlined programs and budgets deveoted to fuel cell developments funded by the European Commission, Germany, Japan, and the US (DOE). Strong long term commitments were evident, with expressed goals of meeting Kyoto requirements and reducing oil dependence through hydrogen and fuel cells. $100s of millions are budgeted. Notably, they all talk in terms of gradual progress up the adoption curve, with the bulk of activity over the next 6-10 years in demos and projects.

Papers
In addition to over 230 poster papers, parallel sessions included presentations on PEM R&D, SOFC, Commercialization and Demonstrations, Fuel Processing and DMFC/Portable. Many of the papers were highly technical and specialized, while others were little more than general overviews for companies and programs (some bordering on infommercials).

Observations
Reflecting on the general state of the industry, governments appear to be the main customers for fuel cell companies, along with the big carmakers who are doing demos, partnerships, and their own development programs (GM was curiously quiet at this event). Otherwise, it just seems to be a swarm of similar sounding programs, and it’s nearly impossible to see any real differentiation that would indicate a possible eventual winner.

This is especially true in PEM, and also to some extent in SOFC. Fuel Cell Energy, of course, is the only US molten carbonate company, and they are just introducing a new and improved series of models into their 12 MW order backlog. They are “commercial”, but price remains an issue, as well as perceived technical risk on the part of buyers (the US Navy does seem to be keen on them for shipboard use). Meanwhile, companies like Plug and Nuvera have quietly stopped talking about residential.

As the long slow march of this technology continues, maybe the traditional approaches are just too difficult. Almost everyone seems to be pursuing the same old stacks with bolts around the edge, and the same handful of reformer technologies. Meanwhile, a number of “stealth” developments are underway, out of the spotlight, by people who are thinking different. They may just come along with novel new approaches that break through the age-old dilemmas of cost, manufacturability, and performance. One is almost tempted to think that if something is being presented at conferences, it’s not cutting edge, and it’s not the answer. (And it’s a safe bet that companies that do make presentations are probably not telling us about their really good stuff.)

Here is an example of such a possible “end-run”: Microcell Corp had a booth showing a very different configuration for a fuel cell system. Very few details were given, but they did tell me their cost goal is less than $100/kw. The cells are long thin hollow tubes (less than 1 mm in diameter) whose wall consists of the anode, electrolyte, and cathode, and which can be made by extrusion. The cells can be arrayed in bundles in a tube and header configuration, and high power densities are predicted. The company is in the 2nd year of a 3 year ATP grant, with cofunding investment by Pepco. www.microcellcorp.com
http://www.atp.nist.gov/awards/00004429.htm

Ceramic Fuel Cell Ltd, of Australia, presented its new all ceramic SOFC stack technology which looks very promising. Temperature cycling is the big issue for SOFC’s and their latest set of innovations have resulted in a simple rugged design.
http://www.cfcl.com.au/

~~~~~~~~~~~~~~
References and Publications:

Abstracts of the 2002 Fuel Cell Seminar–the book is 2 ” thick; also on a CD, available for purchase ($55 and $30, respectively). Contact:
Catherine Porterfield

European Integrated Hydrogen Project
http://www.eihp.org/
White paper: “European Transport Policy for 2010 : time to decide ”
http://europa.eu.int/comm/energy_transport/en/lb_en.html

New releases (at the seminar):
2002 Annual Progress Report, H2, FC and Infrastructure Technologies Programs, 400 page book, or CD. Also online at http://www.eren.doe.gov/hydrogen/publications.html

The new 6th edition of the DOE Fuel Cell Handbook (Oct 2002) was handed out at the Seminar. This comprehensive textbook (450 pages) can be ordered on CD at http://198.99.246.10/

~~~~~~
Overview of Portable Power
The German company Smart Fuel Cell is among the many contenders in portable power, and appear to be making good progress towards commercialization. They were listed among Scientific American’s 50 Business Leaders (Dec issue)
http://www.smartfuelcell.de/en/index.html

They cite this helpful overview of the market on their website:
http://www.fuelcelltoday.com/FuelCellToday/FCTFiles/FCTArticleFiles/Article_509_MarketSurveyPortableApplications.pdf
~~~~~~

[web tips]
— The NETL website has its fuel cell materials under the Strategic Center for Natural Gas. Look under “End-Use” to find fuel cells.
http://www.netl.doe.gov/scng/enduse/enduse.html

— The DOD has a website http://www.dodfuelcell.com/ which details a major residential PEM demo program, as well as the Army’s Fuel Cell Test & Evaluation Center (FCTEC), operated by Concurrent Technologies Corporation (CTC) in Johnstown, PA

~~~~~~~~~
By coincidence, this article appeared right after the Seminar

More Rationalization Of Fuel-Cell Companies Expected
By Lynne Olver, Dow Jones Newswires — Nov 25, 2002

VANCOUVER — The fuel-cell industry is entering an “important phase” in which more corporate consolidation can be expected, according to Pierre Rivard, president and chief executive of Hydrogenics Corp. (HYGS). Rivard said the PC and telecom industries tend to have a few dominant players, and he expects a similar pattern in the fuel-cell business over the next three years.

“It’s typical that, post-consolidation, you might see two, three, perhaps four emerging, larger-sized companies and to me that’s very healthy,” Rivard told Dow Jones.

. . . . The article goes on to describe Plug Power’s acquisition of H Power, and Global Thermoelectric’s interest in finding a buyer or major partner for its SOFC business.

http://online.wsj.com/article/0,,BT_CO_20021125_005129-search,00.html?collection=autowire%2F30day&vql_string=olver%3Cin%3E%28article%2Dbody%29

H2 from Multiple Fuels & Polymeric Membrane Separation

So much is going on in hydrogen these days, but one still wonders whether truly novel developments will ultimately be the key to making H2 an economic and practical part of the energy system. H2fuel, a small technology development company in Chicago, has two important innovations that may be examples the kinds of breakthroughs that are needed.

1. Fuel Processor — Simpler cheaper integrated autothermal reformer system–sulfur tolerant

2. Polymeric Membrane — A unique new membrane that removes CO2 and H2S, by a chemical mass transport, not physical separation, while reducing CO.

H2fuel is jointly owned by Avista Labs(70%) and Unitel Fuel Technologies (30%). H2fuel is looking for investors. A business plan is available.

Contacts:
Lee Camara, Unitel, ehc.unitel@usa.net 847-297-2265
Mike Davis, Avista Labs, mdavis@avistalabs.com 509-228-6685

~~~~~~~~~~~~~~~~~
Here are some technical details, adapted from a 4-page summary the company has prepared, complete with color graphics. (download – password required):
http://www.ufto.com/clients-only/H2fuel.doc.

Fuel Processor

A couple of years ago, H2fuel took over funding of work at Argonne on an autothermal reformer (ATR), and introduced new sulfur-tolerant catalysts. A key goal was to process any number of standard (sulfur bearing) fuels in the same device. The system now promises low cost, simple operation, ease of manufacture, rapid cycling (load following), and ease of manufacture.

Sulfur-tolerant water gas shift (WGS) catalysts have been qualified for both medium temperature and low temperature applications. One of the most significant breakthroughs is the elimination of the zinc oxide bed, thus allowing the H2S produced in this processor to go right through the reactor without any deleterious effects. The H2S is continuously removed by a new subsystem downstream (see below).

The CO produced in the fuel processor, ~1%, depending on the fuel, acts as a PEM fuel cell poison because it affects the anode electrocatalyst. H2fuel has developed a unique method for reducing the CO level to below 10 ppm, thus eliminating this problem.

H2fuel’s new hydrogen processor, with its sulfur-tolerant autothermal and water gas shift catalysts, and without the need for a zinc oxide bed, has been tested continuously for over 2500 hours with natural gas containing ~20 ppm sulfur compounds. During this period, it has successfully completed several load-following tests and maintained an output gas composition (dry basis) of 45% H2, 15% CO2, 1% CO, 0.4% CH4, balance N2. This reactor continues to be tested; however, the fuel is being changed to regular gasoline, and later to fuel grade ethanol.

Polymeric Membrane

On a separate front, under the auspices of a R&D program originally started at the University of Kentucky, and now being continued at Ohio State University, H2fuel has a controlling position in the IP developing polymeric membrane products and support devices to facilitate the removal of H2S and CO2 from the reformate product streams. The key component of this membrane separator is a surface layer that reacts with H2S and CO2, but not with H2 and CO. The membrane transports the reaction products from one side of the membrane to the other by mass transport. The H2S and CO2 desorb on the other side and are swept away. The H2 and CO don’t react with the membrane and are retained on the reformate side. A second membrane stage incorporates a catalyst to deplete the remaining CO in the reformate to less than 10 ppm.

This membrane technology can be used as well to clean up H2 from other production processes. Some major fuel cell companies have made clear their interest once higher temperature operation of the membrane is accomplished.

H2 from Multiple Fuels & Polymeric Membrane Separation

Subject: UFTO Note – H2 from Multiple Fuels & Polymeric Membrane Separation
Date: Thu, 05 Dec 2002

So much is going on in hydrogen these days, but one still wonders whether truly novel developments will ultimately be the key to making H2 an economic and practical part of the energy system. H2fuel, a small technology development company in Chicago, has two important innovations that may be examples the kinds of breakthroughs that are needed.

1. Fuel Processor — Simpler cheaper integrated autothermal reformer system–sulfur tolerant

2. Polymeric Membrane — A unique new membrane that removes CO2 and H2S, by a chemical mass transport, not physical separation, while reducing CO.

H2fuel is jointly owned by Avista Labs(70%) and Unitel Fuel Technologies (30%). H2fuel is looking for investors. A business plan is available.

Contacts:
Lee Camara, Unitel, ehc.unitel@usa.net 847-297-2265
Mike Davis, Avista Labs, mdavis@avistalabs.com 509-228-6685

~~~~~~~~~~~~~~~~~
Here are some technical details, adapted from a 4-page summary the company has prepared, complete with color graphics. (download – password required):
http://www.ufto.com/clients-only/H2fuel.doc.

Fuel Processor

A couple of years ago, H2fuel took over funding of work at Argonne on an autothermal reformer (ATR), and introduced new sulfur-tolerant catalysts. A key goal was to process any number of standard (sulfur bearing) fuels in the same device. The system now promises low cost, simple operation, ease of manufacture, rapid cycling (load following), and ease of manufacture.

Sulfur-tolerant water gas shift (WGS) catalysts have been qualified for both medium temperature and low temperature applications. One of the most significant breakthroughs is the elimination of the zinc oxide bed, thus allowing the H2S produced in this processor to go right through the reactor without any deleterious effects. The H2S is continuously removed by a new subsystem downstream (see below).

The CO produced in the fuel processor, ~1%, depending on the fuel, acts as a PEM fuel cell poison because it affects the anode electrocatalyst. H2fuel has developed a unique method for reducing the CO level to below 10 ppm, thus eliminating this problem.

H2fuel’s new hydrogen processor, with its sulfur-tolerant autothermal and water gas shift catalysts, and without the need for a zinc oxide bed, has been tested continuously for over 2500 hours with natural gas containing ~20 ppm sulfur compounds. During this period, it has successfully completed several load-following tests and maintained an output gas composition (dry basis) of 45% H2, 15% CO2, 1% CO, 0.4% CH4, balance N2. This reactor continues to be tested; however, the fuel is being changed to regular gasoline, and later to fuel grade ethanol.

Polymeric Membrane

On a separate front, under the auspices of a R&D program originally started at the University of Kentucky, and now being continued at Ohio State University, H2fuel has a controlling position in the IP developing polymeric membrane products and support devices to facilitate the removal of H2S and CO2 from the reformate product streams. The key component of this membrane separator is a surface layer that reacts with H2S and CO2, but not with H2 and CO. The membrane transports the reaction products from one side of the membrane to the other by mass transport. The H2S and CO2 desorb on the other side and are swept away. The H2 and CO don’t react with the membrane and are retained on the reformate side. A second membrane stage incorporates a catalyst to deplete the remaining CO in the reformate to less than 10 ppm.

This membrane technology can be used as well to clean up H2 from other production processes. Some major fuelcell companies have made clear their interest once higher temperature operation of the membrane is accomplished.